
www.manaraa.com

www.manaraa.com

Scalable Multi-core Architectures

www.manaraa.com

www.manaraa.com

Dimitrios Soudris • Axel Jantsch
Editors

Scalable Multi-core
Architectures

Design Methodologies and Tools

123

www.manaraa.com

Editors
Dimitrios Soudris
Department of Electrical and
Computer Engineering
National Technical University
of Athens
Heroon Polytechneiou 9
157 80 Athens
Zographou Campus
Greece
dsoudris@microlab.ntua.gr

Axel Jantsch
Department of Electronic Systems
Royal Institute of Technology
Forum 105
164 60 Kista
Sweden
axel@kth.se

ISBN 978-1-4419-6777-0 e-ISBN 978-1-4419-6778-7
DOI 10.1007/978-1-4419-6778-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011938281

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

dsoudris@microlab.ntua.gr
axel@kth.se
www.springer.com

www.manaraa.com

Foreword

The objective of the European research programme in Information and Communica-
tion Technologies (ICT) is to improve the competitiveness of European industry and
enable Europe to shape and master future developments in ICT. ICT is at the very
core of the knowledge-based society. EU research funding has as target to strengthen
Europe’s scientific and technology base and to ensure European leadership in ICT,
help drive and stimulate product, service and process innovation through ICT use
and value creation in Europe, and ensure that ICT progress is rapidly transformed
into benefits for Europe’s citizens, businesses, industry and governments.

Over the last years, the European Commission has constantly increased the
amount of funding going to research in computing architectures and tools with
special emphasis on multicore computing. Typically, European research funding in
a new area (like multi/many cores) starts with funding for a Network of Excellence.
Networks of Excellence are an instrument to overcome the fragmentation of the
European research landscape in a given area by bringing together around a common
research agenda the leading universities and research centers in Europe; their
purpose is to reach a durable restructuring/shaping and integration of efforts and
institutions.

In the following years, a number of collaborative research projects may also be
funded to address specific, more industrially oriented, research challenges in the
same research area. It is important to note here that collaborative research projects
are the major route of funding in the European research landscape in a way that is
quite unique worldwide. In European collaborative research projects, international
consortia consisting of universities, companies and research centers are working
together to advance the state of the art in a given area. The typical duration of such
a project is 3 years.

In 2004, the European Commission launched the HiPEAC Network of Ex-
cellence. In 2006, the European Commission launched the Future and Emerging
Technologies initiative in Advanced Computing Architectures as well as a number
of projects covering Embedded Computing. In 2008, a new set of projects were
launched to address the challenges of the multi/many core transition – in embedded,

v

www.manaraa.com

vi Foreword

mobile and general-purpose computing – under the research headings “Computing
Systems” and “Embedded Systems”; these projects were complemented by a second
wave of projects that have started in 2010 under the same research headings together
with a new Future and Emerging Technologies initiative on “Concurrent Tera-device
Computing”. This effort continues in 2011 with two Calls for Proposals: one under
the heading “Computing Systems” with 45 million euros funding and the other
under the heading “Exascale Computing” with 25 million euros of funding.

The MOSART collaborative research project was funded to perform research
on scalable multicore architectures targeting embedded applications. Results from
MOSART are presented in this book providing a valuable reference point to
researchers and engineers.

It has been a long way, but we now have an important computing research
community in Europe, both from industry and academia, engaging in collaborative
research projects that bring together strong European teams in cutting-edge tech-
nologies. The book that you have in your hands is a clear demonstration of the
breakthroughs that can be obtained through European collaboration.

Panagiotis Tsarchopoulos
Project Officer

European Commission

www.manaraa.com

Preface

Designing an application-specific multi-core System-on-Chip is a tricky endeavor
and requires to make dozens of system level decisions with profound impact on
performance and cost at an early time in the design phase, when many details are
still unknown and performance estimates are notoriously inaccurate. Technology
development is progressing and is continuously increasing our raw computing
capacity. At the same time application requirements and standards become more
demanding. Together this leads to complex designs that require sophisticated and
continuously developed architectures, tools, and methodologies.

In particular since the field during the last decade has embarked to massively in-
crease the number of heterogeneous cores, the picture has become very complicated.
Moreover, it is quickly changing with respect to demands on architectures and tools.
Hence, the design technology seems to fall more and more behind manufacturing
technology, which is also referred to as the design productivity gap and illustrated
in Fig. 1a. In order to get to grips with this disturbing situation, researchers have
tried to develop scalable architectures and tools that continue to be efficient and
usable even as the number of cores dramatically grows. The promise of scalable
architectures or tools is that we can use them in 2011 with 20 or 50 cores, and we
can still use them in 2017 with 200 or 500 cores. Once a scalable architecture for an
application domain or a scalable tool for a design problem has been developed, the
design research stops running behind the semiconductor manufacturing advances
and can truly focus on exploiting the given capabilities of technology, as illustrated
in Fig. 1b.

The European FP7 MOSART project (http://www.mosart-project.org/) has set
as its goal to develop scalable solutions to architectures, tools, and methodologies.
Figure 2 gives an overview of the MOSART design flow and also indicates which
parts are covered in this book. Even though not all the work of the project are
fully documented here, several important results of our work on architecture and
hardware (Part I), system level design and exploration (Part II), and applications
(Part III) are reported.

vii

www.manaraa.com

viii Preface

Fig. 1 Design technology
catches up

The MOSART project was a joint effort from January 2008 till December
2010 by partners from industry (Thales Communication in Paris, Intracom in
Athens, Arteris in Paris, and CoWare/Synopsys in Belgium and Germany), Research
institutes (IMEC in Leuven and VTT in Oulu), and Universities (ICCS in Athens and
KTH in Stockholm). Based on the combined competence, the team had the ambition
to push new techniques in multi-core architecture platforms and design tools.
Inspired from the applications provided by Thales and Intracom, as described in
Chaps. 7 and 8, several innovations have been developed and demonstrated. A major
part of these innovations are summarized in this book, and we sincerely hope it will
be useful and stimulating for researchers and industrial practitioners in the area.

We would like to extend our gratitude to all members of the MOSART team
for an exciting project collaboration, many inspiring discussions, and for the warm
company at many meetings between mild Rhodes Island in the South and chilly
Oulu in the North of Europe. We want to thank the authors for the contributions
and the hard work on the chapters of this book making it into a concise and
representative summary of 3 years of research and development. Furthermore, we
would like to express our appreciation for the project reviewer’s comments and
feedback that were always insightful and to the point, and that greatly helped us
to stay focused, to increase our efforts, and to keep our overall objectives in mind.
They have certainly contributed to make the results of higher quality. We would also
like to thank our project officers (Ms. Zulema Olivan-Tomas and Ms. Margot Bezz)
for their professional and sensible handling of MOSART, and last but not least, we
are very grateful to the team of Springer who has enthusiastically supported this
book from the very beginning, very professionally transformed the material into a
high quality publication, and kept patience and support when the delivery of the
material were behind schedule.

www.manaraa.com

Preface ix

Chapter 6

Chapter 4

System requirementsSpecification capture

Sequential C code

Parallelized code

Parallelized C code

Parallelisation

Exploration

Initial platform
configuration

System-level
exploration

ASIP exploration

ASIP Architecture Description

ASIP design
and implementation

System evaluation

System prototyping

Virtual platform

Interconnect
customisation,
mapping and

data/memory optimisation

HW building blocks for
power management C

Allocator

ASIP
Templates/
PD Design

Kit

runtime
support

NoC
templates

RtLib

Performance
models

Chapter 3

Chapter 2
Chapter 1

Performance
models

Chapter 5

Fig. 2 Multi-core SoC design flow

Most importantly we hope that you, the reader, will enjoy reading this book and
it triggers inspiration and many new ideas.

Athens and Stockholm Dimitrios Soudris
Axel Jantsch

www.manaraa.com

www.manaraa.com

Contents

Part I HW/SW/ Building Blocks: Architecture, Methods,
and Techniques

1 Memory Architecture and Management in an NoC Platform 3
Axel Jantsch, Xiaowen Chen, Abdul Naeem, Yuang Zhang,
Sando Penolazzi, and Zhonghai Lu

2 Application-Specific Multi-Threaded Dynamic Memory
Management . 33
Sotirios Xydis, Alexandros Bartzas, Iraklis Anagnostopoulos,
and Dimitrios Soudris

3 Power Management Architecture in McNoC . 55
Jean-Michel Chabloz and Ahmed Hemani

4 ASIP Exploration and Design . 81
Jari Kreku, Kari Tiensyrjä, Andreas Wieferink,
and Bart Vanthournout

Part II System-level Exploration

5 System Exploration . 107
Jari Kreku and Kari Tiensyrjä

6 MPA: Parallelization Made Easy . 139
Geert Vanmeerbeeck and Thomas J. Ashby

Part III Industrial Applications

7 MPSoC Architecture Performance Analysis for Agile SDR
Radio Applications . 173
Sylvain Aguirre and Bernard Candaele

xi

www.manaraa.com

xii Contents

8 Application of the MOSART Flow on the WiMAX (802.16e)
PHY Layer . 197
Frank Ieromnimon, Dimitrios Kritharidis,
and Nikolaos S. Voros

www.manaraa.com

Contributors

Sylvain Aguirre Thales Communications and Security, Paris, France,
Sylvain.AGUIRRE@fr.thalesgroup.com

Iraklis Anagnostopoulos National Technical University of Athens, 9 Heroon
Polytechneiou, Zographou Campus, Greece, iraklis@microlab.ntua.gr

Thomas J. Ashby IMEC Belgium, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be

Alexandros Bartzas National Technical University of Athens, 9 Heroon Polytech-
neiou, Zographou Campus, Greece, alexis@microlab.ntua.gr

Bernard Candaele Thales Communications and Security, Paris, France,
bernard.CANDAELE@fr.thalesgroup.com

Jean-Michel Chabloz ES Department, School of ICT, KTH, Isafjordsgatan 39,
FORUM 120, 16440 Kista, Sweden, chabloz@kth.se

Xiaowen Chen Royal Institute of Technology, Stockholm, Sweden,
xiaowenc@kth.se

Ahmed Hemani ES Department, School of ICT, KTH, Isafjordsgatan 39, FORUM
120, 16440 Kista, Sweden, hemani@kth.se

Frank Ieromnimon INTRACOM S.A.Telecom Solutions, Peania, Greece,
fier@intracom.gr

Axel Jantsch Royal Institute of Technology, Stockholm, Sweden, axel@kth.se

Jari Kreku VTT Technical Research Centre of Finland, Kaitoväylä 1 FI-90570
Oulu, Finland, jari.kreku@vtt.fi

Dimitrios Kritharidis INTRACOM S.A.Telecom Solutions, Peania, Greece,
dkri@intracom.gr

xiii

Sylvain.AGUIRRE@fr.thalesgroup.com
iraklis@microlab.ntua.gr
ashby@imec.be
alexis@microlab.ntua.gr
bernard.CANDAELE@fr.thalesgroup.com
chabloz@kth.se
xiaowenc@kth.se
hemani@kth.se
fier@intracom.gr
axel@kth.se
jari.kreku@vtt.fi
dkri@intracom.gr

www.manaraa.com

xiv Contributors

Zhonghai Lu Royal Institute of Technology, Stockholm, Sweden,
zhonghai@kth.se

Abdul Naeem Royal Institute of Technology, Stockholm, Sweden, abduln@kth.se

Sandro Penolazzi Royal Institute of Technology, Stockholm, Sweden,
sandrop@kth.se

Dimitrios Soudris National Technical University of Athens, 9 Heroon Polytech-
neiou, Zographou Campus, Greece, dsoudris@microlab.ntua.gr

Kari Tiensyrjä VTT Technical Research Centre of Finland, Kaitoväylä 1 FI-90570
Oulu, Finland, kari.tiensyrja@vtt.fi

Geert Vanmeerbeeck IMEC Belgium, Kapeldreef 75, B-3001 Leuven, Belgium,
vanmeerb@imec.be

Bart Vanthournout Synopsys, Interleuvenlaan 15A B-3001 Leuven, Belgium,
bartv@synopsys.com

Nikolaos S. Voros Technological Educational Institute of Mesolonghi, Department
of Telecommunication Systems & Networks (consultant to Intracom Telecom
Solutions S.A), Greece

Andreas Wieferink Synopsys, Team4 Building, Kaiserstrasse 100 D-52134
Herzogenrath, Germany, andreasw@synopsys.com

Sotirios Xydis National Technical University of Athens, 9 Heroon Polytechneiou,
Zographou Campus, Greece, sxydis@microlab.ntua.gr

Yuang Zhang Royal Institute of Technology, Stockholm, Sweden,
yazhang@kth.se

zhonghai@kth.se
abduln@kth.se
sandrop@kth.se
dsoudris@microlab.ntua.gr
kari.tiensyrja@vtt.fi
vanmeerb@imec.be
bartv@synopsys.com
andreasw@synopsys.com
sxydis@microlab.ntua.gr
yazhang@kth.se

www.manaraa.com

Part I
HW/SW/ Building Blocks: Architecture,

Methods, and Techniques

www.manaraa.com

Chapter 1
Memory Architecture and Management
in an NoC Platform

Axel Jantsch, Xiaowen Chen, Abdul Naeem, Yuang Zhang,
Sando Penolazzi, and Zhonghai Lu

Abstract The memory organization and the management of the memory space
is a critical part of every NoC based platform design. We propose a Data Man-
agement Engine (DME), that is a block of programmable hardware and part of
every processing element. It off-loads the processing element (CPU, DSP, etc.)
by managing the memory space, memory access and the communication over
the on-chip network. The DME’s main functions are virtual address translation,
private and shared memory management, cache coherence protocol, support for
memory consistency models, synchronization and protection mechanisms for shared
memory communication. The DME is fully programmable and configurable thus
allowing for customized support for high level data management functions such as
dynamic memory allocation and abstract data types. This chapter describes the main
concepts, design and functionality of the DME and presents case studies illustrating
its usage and performance.

Keywords Network on Chip • SoC Architecture • Memory Organization

1.1 On-Chip Memory Organization

On-chip Computation is moving away from a sequential to a parallel paradigm
leading to dozens, hundreds, and soon even thousands of cores and computational
units on a single die. These many core chips can be highly homogeneous or irregular
and heterogeneous, depending on the application area and market segment. At the
same time, the communication infrastructure is developing into a similarly parallel

A. Jantsch (�) • X. Chen • A. Naeem • Y. Zhang • S. Penolazzi • Z. Lu
Royal Institute of Technology, Stockholm, Sweden
e-mail: axel@kth.se; xiaowenc@kth.se; abduln@kth.se; yazhang@kth.se; sandrop@kth.se;
zhonghai@kth.se

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 1,
© Springer Science+Business Media, LLC 2012

3

axel@kth.se;
xiaowenc@kth.se;
abduln@kth.se;
yazhang@kth.se;
sandrop@kth.se;
zhonghai@kth.se

www.manaraa.com

4 A. Jantsch et al.

structure, which is often called a Network-on-Chip (NoC). Shared, serial buses are
replaced by pipelined communication networks that allow hundreds or thousands of
communications going on concurrently at any time.

Only the third member of the trio computation, communication, storage, is
lacking behind in this rapid transformation of sequential into massively parallel
activity. Among the profound obstacles against making memory access as parallel
as computation and communication, are the usage of shared memory for commu-
nication and temporary storage, and the large divide between on-chip and off-chip
memory technology.

In 1995 Wulf and McKee described in a remarkable, short article a trend that is
since then known as the approach to the memory wall [32]. Based on the observation
that processor speed grows by 80% every year but memory access time decreases
only by 7% per year, they predict that, if no invention breaks this trend, program
performance is solely limited by memory access within 5 to 12 years (in year 2000
and 2007, respectively). Before we discuss the situation today, it is worthwhile to
recall Wulf and McKee’s original argument. Consider the equation

tavg = p× tc+(1− p)× tm

where tavg is the average access latency to access a data word, p is the probability
of a cache hit, tc is the access time to the cache, and tm is the access time to main
memory. If a program has 1 memory instruction per 4 other instructions, the memory
wall is hit when tavg ≥ 5 cycles (assuming one instruction takes 1 cycle to execute).
When this condition is met, the program execution time is determined by the access
time to main memory and there is no benefit to improve the processor performance.

Since 1995 many architectural innovations have avoided a hard impact into the
memory wall. Improved interfaces such as DDR, DDR2, and DDR3 have increased
the bandwidth to DRAM memory; packaging technology has increased the pin
count such that two or four DDR3 interfaces are feasible today; additional levels
of caches have helped to avoid the penalty of going off-chip. The former two
effectively keep tm low while the latter increases p.

To illustrate current state of the art, consider a fictive example with a 10×10 core
chip, each core executes three instructions per cycle (either due to pipelining or with
multiple functional units). There is an L1 cache for each core and one L2 cache on
chip. The chip has four 64bit DDR3 interfaces. For the sake of simplicity we assume
the access time to L1 is 1 cycle, to L2 is 10 cycles and to external DRAM it is 20
cycles. Let the hit ratio p be 90% for both caches. With a slightly generalized version
of above equation, taking into account a second level of caching, we obtain tavg=2.0
cycles. If each core would execute 1 instruction per cycle, we would be fine since
we are below the limit tavg=5. But because each core can execute 3 instructions
per cycle and every 5th instruction on average is a memory access, our limit is in
fact tavg=5/3 = 1.67. Thus, our chip operates close to the memory wall and its
performance is limited by the access latency to external memory. In fact it seems to
be a fairly balanced system where neither the processors nor the memory access is
over- or under-dimensioned.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 5

However, this example assumes there is no contention in the network, at the
DRAM ports, at the L2 cache, we have no delays due to cache coherence, memory
consistency issues, or shared variable protection. If any of these issues appear, it will
increase the tavg, effectively making the memory access the bottleneck. Increasing
the number of cores will significantly worsen the situation because it will increase
the demand for on-chip data more than the off-chip interface will allow to pass
through.

Wulf and McKee speculated that the most convenient resolution to the problem
would be “the discovery of a cool, dense memory technology whose speed scales
with that of processors”. Such a technology may in fact come to our rescue.
ZRAM [2] and the memristor [31] are contenders for very dense, very fast memory
technology with nicely scalable access times. Integration of logic dies with memory
dies in a 3D stack is already viable today and has very strong potential for the high
performance, high volume consumer markets in the next few years. Placing DRAM
dies on top of the logic dies puts the memory within a few tens of μm distance
from the core that needs the data. Through Silicon Vias (TSVs), the interconnect
between two vertically stacked dies, occupy an area of less than 100μm2, consume
less than 25μW, and incur a latency of less than a few hundred picoseconds. All
this together gives us performance per power and cost improvements of 1000X to
10000X over off-chip connections [19, 30]. Hence, high density, low cost memory
can be placed very close to the cores of the many-core chip, effectively bringing tavg

to 1 and eliminating one or two cache levels.
However, there is a catch, requiring architectural innovation in addition to

manufacturing technology. The geometric distance and thus the access latency
varies a lot depending on where in the system the core and the accessed memory
are. A core can fetch a variable within one cycle if it is stored in the memory
bank just above, but it may take 10–100 cycles or more to fetch it from across
the chip. Already Wulf and McKee have suggested that it may be wise to abandon
the assumption that access time is uniform to all parts of the address space, and
in [19] it is shown, that the principle performance limit in a 3D stacked system
and a projected 17 nm technology is a factor 34 higher for a distributed memory
system compared to a centralized one. Following the same logic, Kim et al. [20]
have proposed a Non-uniform Cache Architecture (NUCA) in 2002 and many others
have elaborated this idea since then (e.g. [4, 10, 11, 18, 33]). When 3D integration
became a realistic option, a number of groups used it to integrate logic and memory,
first by reusing traditional memory components [23,25]. In a next step, customized
memory architecture were proposed to fully exploit the potential [22, 24].

Reviewing these arguments and the technology trends, we conclude that a
distributed memory organization with massively parallel access to different parts
of the memory will allow for scalability en par with many core architectures and
general on-chip communication networks. It will avoid memory access to become a
bottleneck even for systems with thousands of cores and NoCs with raw bandwidth
in the range of petabit per seconds.

In order to make distributed memory an attractive option to system designers, we
need to address all the caveats and problems that typically come with distributed

www.manaraa.com

6 A. Jantsch et al.

memory schemes. One first, critical question is, if the memory space is shared or
not. Keeping memory only local and private is an elegant architecture solution but
ignores rather than solves the issues of legacy code and programming convenience.
A lot of legacy software assumes a shared memory model and most programmers
find it easier to express themselves within a shared memory programming paradigm
rather than a model that is strictly based on message passing. Consequently, we
believe that the architecture should support both a private and a shared memory
organization.

Distributed, shared memory (DSM) schemes need to address cache coherency,
memory consistency, and synchronized and protected access to shared variables. In
order to offer solutions for all these and potentially many other memory and data
management related tasks, we propose a programmable controller, that is optimized
for managing the memory and data. It is called Data Management Engine (DME)
and it is described in the following sections.

The DME provides efficiency through specialization. It can be viewed as an
attempt to increase the parallelism on chip and to increase efficiency by means
of specialization. By increasing parallelism higher performance can be gained at
the same frequency; by specialization, less energy is expended for the same task.
Since memory access is common in all applications and determines to a large
extent performance, cost, and power consumption, it is reasonable to expect that
a specialized memory transaction handler can improve performance and efficiency
at modest cost.

1.2 DME-Enhanced Multi-Core NoC Platform

The basic concepts of the DME have been first introduced at DATE 2010 [8].
It has since then been used for a range of different applications and in different
ways, for instance for different synchronization techniques [5, 7, 9] and for run-
time partitioning of private/shared memory [6]. In this section we review the basic
architecture of the DME, its main functions and features. In the following sections
we then touch upon some of the applications and usages of the DME.

Figure 1.1a shows an example of our DME-enhanced multi-core NoC platform.
The system is composed of 16 Processor-Memory (PM) nodes interconnected via a
packet-switched network. The network topology is a mesh. As shown in Fig. 1.1b,
each PM node contains a processor core, a DME, a local memory, and other
hardware modules connected to the local bus. In our experiments, we use Leon3 [1]
as the processor core, but any other core, or IP, or local computing cluster could be
used as well. The DME connects the local processor core, the local memory, and the
network. It not only handles all memory transactions from a local processor to both
local memory and remote memory on- or off-chip, but also serves remote memory
requests from remote processors via the network.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 7

Fig. 1.1 In a multi-core network (a) each node contains its own DME (b) for handling memory
transactions. The figure illustrates the experimental platform used

Fig. 1.2 Architecture of the Data Management Engine

The DME contains two programmable micro-controllers called mini-processor A
and mini-processor B (Fig. 1.2). Their instruction sets are identical and include
general purpose instructions such as load, store, addition, subtraction, condition
testing, and branching, as well as a number of specialized instructions for support
of synchronization, message generation, and address manipulations. In principle, all
kinds of functions can be realized by the DME, since it is programmable, and the
main local processor can use it as a local, specialized co-processor to which it can
off-load memory management functions.

www.manaraa.com

8 A. Jantsch et al.

The two mini-processors fetch their instructions from a local control store, which
they share, but operate on their own private set of registers. Mini-processor A is
triggered by commands from the local processor that are received through the Core
Interface Control Unit (CICU). Mini-processor B is either invoked by a command
from the local mini-processor A or by a request received from a remote node through
the Network Interface Control Unit (NICU). The Sync Supporter manages the access
to locks by means of two specialized instructions, load linked (ll) and store linked
(sl). It allows for implementation of locks and barriers.

1.3 Data Management Engine (DME)

Although it is optimized for handling memory transactions and for managing the
memory and address space, the DME is a programmable dual-core controller with
a fairly general instruction set. First we describe the overall architecture of the
DME and its components (Sect. 1.3.1), then we elaborate on the execution flow of
the DME (Sect. 1.3.3) and the methodology for developing new micro-programs
(Sect. 1.3.4).

1.3.1 Architectural Design

As shown in Fig. 1.2, the DME, which connects to the CPU core, the local memory,
and the network, mainly contains six parts, namely, Core Interface Control Unit
(CICU), Network Interface Control Unit (NICU), control store, mini-processor
A, mini-processor B, and Synchronization Supporter. As their names suggest, the
CICU provides a hardware interface to the local core, and the NICU a hardware
interface to the network. The two mini-processors are the central processing engine.
A microprogram is initially stored in the local memory, and is dynamically uploaded
into the control store on demand during the program execution. The synchronization
supporter coordinates the two mini-processors to avoid simultaneous accesses to the
same memory address and it guarantees atomic read-and-modify operations (see
Sect. 1.4.3). Both the local memory and the control store are dual ported: port A
and B, which connect to the mini-processors A and B, respectively. The functions
of each module are detailed as follows:

1.3.1.1 Core Interface Control Unit

The CICU connects with the core, the mini-processor A, the NICU, the control store
and the local memory. Its main functions are: (i) it receives local requests in form
of commands from the local core and triggers the operation of the mini-processor A
accordingly; (ii) if the microcode is not already in the control store, it uploads it from
the local memory to the control store through port A; (iii) it receives results from

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 9

the mini-processor A; (iv) it accesses the private memory directly using physical
addressing if the memory access is private; (v) it sends results back to the local core.

1.3.1.2 Network Interface Control Unit

The NICU connects the network, the mini-processor B, the CICU, the control store,
and the local memory. Its main functions are: (i) it receives remote requests in form
of commands from the network and triggers the operation of the mini-processor B
accordingly; (ii) if the microcode is not already in the control store, it uploads it from
the local memory to the control store through port B; (iii) it sends remote requests
from the mini-processor A or B to remote destination nodes by packaging the
request in a message via the network; (iv) it receives the remote results as messages
from remote destination nodes via the network, unpacks them, and forwards them
to the mini-processor A or B.

Mini-Processor A

The mini-processor A connects with the CICU, the register file A, the synchroniza-
tion supporter, the control store, and the local memory. Its operation is triggered
by a command from the local core. It executes microcode from the control store
through port A, uses register file A for temporary data storage, and accesses the
local memory through port A.

Mini-Processor B

The mini-processor B connects with the NICU, the register file B, the synchroniza-
tion supporter, the control store, and the local memory. Its operation is triggered
by a command from remote cores via the network. It executes microcode from the
control store through port B, uses register file B for temporary data storage and
accesses the local memory through port B.

The two mini-processors feature a five-stage pipeline and four function units:
Load/Store Unit (LSU), Adder Unit (AU), Condition Unit and Message Pass-
ing Unit (MPU), to provide operations of memory access, addition, conditional
branching, and message-passing. The microinstructions are designed to exploit the
hardware architecture of the mini-processors. the microinstructions are organized
horizontally [29].

1.3.1.3 Synchronization Supporter

The synchronization supporter, which connects with the mini-processor A and B, is
a hardware module to support atomic read-and-modify operations. This is necessary
to support locks when two synchronization requests try to access the same lock at
the same time.

www.manaraa.com

10 A. Jantsch et al.

Table 1.1 Synthesis results with 90 nm SMIC technology

Optimized for area Optimized for speed

Frequency 448 MHz (2.23 ns) 500 MHz (2 ns)
Area (logic) 46 k NAND gates 57 k NAND gates
Area (control store) 237k NAND gates

Table 1.2 DME power
consumption at 400 MHz
and implemented with
90 nm TSMC

Power consumption [mW]

Mini A 6.9
Mini B 7.0
NICU 2.3
CICU 5.2
Synchronizer 0.2
DME total 21.6

1.3.1.4 Control Store

The control store, which connects with the CICU, the NICU, the mini-processor A
and B, and the local memory, is a local storage for microcode. It acts as an
instruction cache and dynamically uploads microcode from the local memory. It
feeds microcode to the mini-processor A through port A, and the mini-processor
B through port B. This uploading and feeding are controlled by the CICU for
commands from the local core and the NICU for commands from remote cores
via the network.

In summary, the DME features: (i) dual interfaces and dual processors, (ii)
cooperation of the interface units and the mini-processors, (iii) dual-port shared
control store and local memory, (iv) hardware support for mutex synchronization,
and (v) dynamic uploading of microcode into the control store.

1.3.2 DME Implementation

The DME design has been synthesized by Synopsys Design Compiler in SMIC
90 nm technology and the control store is generated by Artisan Memory Compiler.
The control store is 2048× 128b dual port SRAM. Table 1.1 shows the results of
the synthesis in terms of maximum frequency and gate count. For power analysis
the DME has been synthesizes with the Cadence RTL compiler with TSMC 90 nm
technology, and the gate netlist has been simulated for all possible transactions
and instructions. Table 1.2 gives the power consumption of the different DME
components. The power consumption is given for an idle DME at 400 MHz clock
frequency. Depending on the operation of the DME, the power consumption has
been observed to be up to 15–20% higher compared to the idle state.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 11

Fig. 1.3 Command-triggered microcode execution

1.3.3 Command-Triggered Microcode Execution

For the DME, the execution of the mini-processors is triggered by requests (in form
of commands) from the local and remote cores. This is called command-triggered
microcode execution.

As shown in Fig. 1.2, the two interface units are coupled with their corresponding
mini-processors to support the command-triggered microcode execution. The two
interface units are pure hardware modules responsible for receiving commands from
the local CPU core and remote cores via the on-chip network, respectively, and
then triggering the execution of the two mini-processors. The two mini-processors
are microprogrammable. Figure 1.3 illustrates command-triggered microcode exe-
cution. As shown in the figure, there is a command queue as well as a Command
Lookup Table (CLT) in each interface unit. The queues buffer commands from the
CPU core or remote cores via the on-chip network. If both the command queue is
empty and the mini-processor is idle, the command bypasses the command queue
to reach the CLT directly.

The Command Lookup Table (CLT) reflects the correspondence of a command
and a microcode. The CLT is indexed by the command to output the start address
of the command’s corresponding microcode. The start address is forwarded to the
mini-processor, so the mini-processor is able to know where the current microcode
execution starts. Figure 1.4a shows an example CLT. The “Symbol” is mnemonic.
The command “Number” has a one-to-one correspondence with the “Start Addr” of
the related microcode. Figure 1.4a lists several commands we have implemented,
and Fig. 1.4b shows snapshots of three pieces of microcode. As we can see,
“LOAD HWORD” command with its command No. 4 is responsible for loading a
half word from the local memory. The start address of its related microcode is 24, so
in the CLT we have an item recording the relationship between “LOAD HWORD”
command and its microcode.

www.manaraa.com

12 A. Jantsch et al.

Fig. 1.4 (a) Command Lookup Table (CLT) and (b) microcode segments

As illustrated in Fig. 1.5, the DME works as follows (the microprogram is
initially stored in the local memory):

1© The CICU/NICU receives a command from the local or a remote core.
2© A command will trigger the uploading of its microcode from the local memory

to the control store. The control store has limited storage. If there is no space
available when uploading the microcode to the control store, a replacement
policy will be activated to replace a microcode with the currently activated one.

3© Then the mini-processor A or B will generate addresses to load the microin-
struction from the control store to the datapath of the mini-processor.

4© The mini-processor A or B executes the microinstructions of the microcode.

This procedure is iterated during the entire execution period of the system.

1.3.4 Microprogramming Development Flow

Developers can develop new micro-programs for the DME in order to customize
existing functions for a specific application and/or architecture, or to develop whole
new functions. The current, rather rudimentary, tool support consists of an assembler
and a configuration tool. For future development a C compiler and debugging
support is planned. Figure 1.6 depicts the entire flow of microprogramming the
DME. The flow consists of six steps:

1© The user specifies the function to be implemented in the DME.
2© A new generic command is defined according to the function specification.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 13

START

Receive a command from local or remote CPUs
(If local, via the CICU; If remote, via the NICU)

Is the corresponding microcode of
the command in the control store?Uploading the

corresponding
microcode into

the control
store. The miniprocessor A or B

generates addresses to fetch the
microinstructions of the

microcode from the control store

The miniprocessor A or B
executes the micronstructions of

the microcode

The execution of the
microcode is completed?

Yes

Yes

No

No

1

2

3

4

Fig. 1.5 The execution flow of the DME

3© A newly defined command is added into the CLT or an existing command is
updated or removed by the “CLT command”.

4© The user writes microcode in the DME assemble language for the specified
function, then translates it into executable binary code by the DME assembler.

5© The binary microcode is uploaded from the local memory into the control store.
If the programmer omits this step, the code is uploaded automatically at run
time when needed.

6© The DME library has to be updated in order for the newly defined command to
be supported by the compiler and used by application programs.

Users can follow this flow iteratively to add, update and delete commands of
different functions. For instance, as shown in Fig. 1.6, our function specification is
implementing a function to store a half word into the local memory. In step 2©,

www.manaraa.com

14 A. Jantsch et al.

Fig. 1.6 Microprogramming development flow

we define a new generic command with Command Symbol STORE HWORD,
Command No. 7 and the start address 55. The start address is obtained in
step 4© after the corresponding microcode is written and interpreted. In step 3©,
the newly defined command is added into the Command Lookup Table (see
the red dashed box) using “CLT command”. In step 5©, the binary code of the
newly written microcode is uploaded from the local memory to the control
store using “MDL command”. Finally, write a user-defined function to add the
information of STORE HWORD into the DME Library. Afterwards, the command
STORE HWORD can be used successfully.

1.4 DME Applications

Due to its general purpose nature, a wide range of memory and data management
functions can be realized on the DME in many different ways. So far we have
experimented with memory partitioning, virtual address space, synchronization,
cache coherency, local synchronization, memory consistency, and dynamic memory
allocation. We describe some of these functions in the following sections to illustrate
the usage and efficiency of the DME. The design and implementation of a complete
dynamic memory allocator on the DME is described in Chap. 2.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 15

0X00000000

Node 2
Address Space

0XFFF0000

Shared,
Local or
remote

BADDR

Private,
Local

0XFFFC000

0XFFFFFFFF 0XFFFFFFFF

0X00000000

Node 4
Address Space

BADDR

Private,
Local0X0F00000

0XFFFFFFFF

0X00000000

Node 1
Address Space

Private,
Local

Shared,
Local or
remote

BADDR

0XFB00000

0XFFFFFFFF

0X00000000

Node 3
Address Space

BADDR

Shared,
Local or
remote

local

local

local

local

remote

local

remote

local

remote

Fig. 1.7 Different nodes may partition their address space differently

1.4.1 Private and Shared Memory Partitions

A main source of overhead is the size of the shared memory space. For virtual-to-
physical address translation, the size of translation tables are a linear function of
the number of pages in the shared address space. Likewise, in a directory based
cache coherence protocol, the size of the directory is in some schemes directly
proportional to the size of the total shared memory. Moreover, access to shared
memory carries a significant latency penalty, compared to private memory access,
due to address translations, table look-ups, coherence, and consistency protocols.
Consequently, it is desirable to keep the shared memory space as small as possible.

The DME allows the application programmer to specify the size of private and
shared memory partitions in a very flexible way. These partitions can be different
in different nodes and can be dynamically modified to track the varying needs of an
application at run-time.

The DME maintains a register called BADDR (Base Address), that is a pointer
dividing the private from the shared address space. If a memory transaction uses
an address less or equal to this number, it addresses the private space; otherwise
it is a shared address. This pointer can be set differently in different nodes, as
illustrated in Fig. 1.7, and it can be modified dynamically. Local, private memory
accesses are handled by mini-processor A only and are very fast. Essentially, they
are simply forwarded by the DME to the local memory port within one cycle. Access
to shared and remote memory requires more bookkeeping and incur a few cycles
delay inside the DME. Requests to a remote memory location are handed over to
mini-processor B, which packs the memory transaction into a packet and sends it
over to the remote DME through the network. At the far side mini-processor B
receives the request, accesses its own local memory, and sends the response back
over the network. Locally, mini-processor B receives the response and hands it over
to the main processor.

www.manaraa.com

16 A. Jantsch et al.

Table 1.3 Supported
combinations of memory
access features

local / private / physical Supported

local / private / virtual –
local / shared / physical –
local / shared / virtual Supported
remote / private / physical –
remote / private / virtual –
remote / shared / physical –
remote / shared / virtual Supported

If we have a physical address space only, a memory translation process based on
equally sized pages yields the details of the remote memory address. A table in local
memory is used to translate the remote address into a node id, a page address in the
remote memory, and a page offset.

The dynamic change of the BADDR pointer gives the platform user very high
flexibility. Moreover, it allows for the usage of tricks to maximize performance. For
instance, consider a producer node that generates an array of data, which another
consumer node uses for further processing. The array can be allocated in the shared
memory part of the consumer’s local memory. The producer writes to this array,
allowing the write access latency over the network to be hidden since the producer
does not have to wait until the writes complete. Once the full array is generated,
the consumer node can change BADDR such that the array now falls into local,
private memory. Access to this part would now be very fast because the bookkeeping
overhead of shared memory access can be avoided.

Tricks like these can maximize performance, but they can potentially lead
to inconsistent system states and hard-to-find errors. Therefore, we consider to
implement an automatic table update mechanism triggered by a change to BADDR.

1.4.2 Virtual Address Space

The current version of the DME also supports a virtual address space giving
flexibility to application programmers and compilers because the addresses used
in a program can be kept separate of other programs and independent of where in
the system the program is executed. On the other hand, the management of a virtual
address space and the translation from virtual to physical addresses incur quite some
overhead in terms of latency, translation tables, and power consumption.

Therefore we allow currently only a few of the possible combinations, listed in
Table 1.3. Private memory can only be local and with a physical address. In contrast,
shared memory requires a virtual address. This policy limits the number of possible
cases and allows for a high performance, low overhead implementation. Access
to local private memory requires no virtual address translation and is therefore
processed in one cycle, essentially passing through the DME from the CPU to local
memory. Shared memory access requires a virtual-to-physical address translation
and can be local or remote. The current DME implementation performs a virtual-to-
physical address translation in 11 cycles.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 17

Fig. 1.8 (a) test-and-set(); (b) the conventional blocking test-and-set(); (c) our proposed test-and-
set-blocking()

1.4.3 Synchronization

The Synchronization Supporter in the DME provides the hardware support for
memory synchronization. It works with microoperations ll and sc to guarantee
atomic read-and-modify operations on mutex locks. Based on them, higher level
synchronization mechanisms can be built.

We have implemented two synchronization primitives: test-and-set(), test-and-
set-blocking(). test-and-set() is non-blocking and the programmer may use it to
implement a spin lock. However it incurs additional network traffic as the program
re-spins the lock, as illustrated in Fig. 1.8a. test-and-set-blocking() Fig. 1.8c is an
improvement over the conventional spin-lock based blocking test-and-set() [17]
(Fig. 1.8b). With the conventional blocking test-and-set(), the mini-processor B in
the remote node would continue to spin the lock until success while executing the
microcode. This does not incur additional network traffic, but other requests from
other nodes will be blocked as the mini-processor B continuously polls the lock.
Our proposed test-and-set-blocking() utilizes the cooperation of the mini-processor

www.manaraa.com

18 A. Jantsch et al.

N
od

e
N

Memory block

N
od

e
1

N
od

e
2

N
od

e
3

DirectoryMemory

Fig. 1.9 The directory contains an entry for each block of shared memory

B and the NICU. If an acquire of the lock fails, the related command will be placed
to the tail of the command queue to wait for the next execution. This avoids incurring
additional network traffic and will not block other commands.

1.4.4 Cache Coherency

One of the more challenging problems in a distributed shared memory system is
to realize a scalable, high performance, low overhead cache coherence scheme.
Snooping based protocols do not scale well with interconnects where broadcasting
transactions to all members in the system is prohibitively expensive. Directory
based protocols scale relatively well in terms of performance but care has to be
taken to avoid large memory overhead due to the directory (see [12, 16] for general
discussions of the topic).

As motivated above, we expect the application programmer to keep the shared
memory space small. Therefore, we have, in a first stage, implemented a classic and
simple directory based cache coherence protocol. The memory overhead due to the
directory is modest if the size of the shared memory space is kept within reasonable
bounds.

The directory maintains status information about each block of shared memory
(Fig. 1.9). A block in main memory corresponds to a line in the cache. When a node
has a shared memory partition, a fraction of the memory has to be sacrificed for
the directory. For each block of memory there is one entry in the directory, which
contains one bit for each node in the network. This bit is 1, when the corresponding

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 19

SharedWrite miss

Read miss

Write miss

Read miss

Write hit
Invalid

Fig. 1.10 State transition diagram of the SI cache coherence protocol

node holds a copy of the block in its local cache (the node is a sharer); 0 otherwise.
Thus the size of the directory is N ×M bit, where N is the number of nodes in the
network, and M is the number of blocks in the shared memory space.

We use a simple, write-through, no-allocate policy with a Shared-Invalidate (SI)
protocol [13]. On a write, data is always written to main memory which is thus kept
up to date. On a write-miss, the date is not written to the local cache (no-allocate).
With this policy no node is ever the exclusive owner of a memory block and the
corresponding cache coherence protocol can be kept simple (Fig. 1.10).

This scheme has several advantages: (1) it is easy to implement; (2) the main
memory has always the most recent value; (3) a read miss results never in a write
to memory. On the downside we have: (1) write is slow, because it always goes to
main memory; (2) every write results in a memory transaction even if the same node
writes many times to the same location in sequence; (3) more memory transactions
appear on the network which has to be able to cope with this load.

We implement several routines on the DME to operate the protocol. These
routines realize the directory control and the memory access. The routines generate
messages according to the protocol and change the directory states.

Here, three kinds of nodes are involved. The Home Node is the node which
hosts the target memory and the related directory. The Local Node is the node
which issues the read/write request. Finally, the Remote Node is the node which
also maintains the data copy in its cache. When there is a read/write miss in the
processor’s cache, a read/write request is sent to its DME. If the address is in local,
shared space, the request is processed by its own DME. If it is a remote, shared
address, the Local Node sends the request to the Home Node. Once the request
arrives at the Home Node, the read/write routine for cache coherence is triggered.

For read request, the Home Node always keeps the up-to-date data. The data is
returned to the Local Node directly. Figure 1.11a shows the read procedure. In a
write request (Fig. 1.11b), there may be one or more Remote Nodes that also have
the data in their local caches. So the Home Node needs to send invalidation requests
to all these Remote Nodes. And once all the invalidation acknowledgements have
returned, the Home Node grants the Local Node the right to update the data.

Although this scheme is relatively simple and is not effective in all cases, it
can offer significant performance improvements and good scalability properties

www.manaraa.com

20 A. Jantsch et al.

Local Node
Home Node

Local Node Home Node Remote Node

1. Write Request 2. Invalidation

4. Write Response 3. Acknowledgement

Read Request

Read Response

a b

Fig. 1.11 The read procedure (a) and write procedure (b) in the cache coherence protocol

for applications with a modest amount of shared memory and fairly localized
communication and memory access patterns. As future work we plan to realize a
hierarchical cache coherence scheme along the lines described in [34].

1.4.5 Memory Consistency

The memory consistency model is a contract between the programmer and shared
memory parallel system. The programmer follows the rules that are guaranteed by
the parallel system to get the predictable results of the shared memory operations.
The shared memory access latency can be reduced by the hardware and software
optimizations in the system architecture. These performance optimizations can
reorder the shared memory operations and the system may give unexpected results.
For the expected results, these reordering should be controlled carefully. Different
memory consistency models enforce different ordering constraints on the shared
memory operations [3, 12]. Here we focus on some of the memory consistency
models that are realized in the DME based multi-core systems.

1.4.5.1 Sequential Consistency

The sequential consistency (often called Strong Ordering) defined by Lamport [21]
has to maintain the program order among operations of each individual processor
and sequential order among multiple processors in the system. It is a strict model
and does not allow reordering between shared memory operations in the multi-core
systems. A memory operation (read or write) cannot be reordered or overlapped with
the following memory operation to the different locations in the shared memory.
The shared memory operations are completed according to the program order as
shown in Fig. 1.12a. The sequential consistency enforces the global orders on shared
memory operations as given in Fig. 1.12b.

The sequential memory consistency model in the DME based multi-core NoC
platform is realized by stalling the processor on the issuance of a shared memory
operation till the completion of the preceding operations [27]. Then, the processor

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 21

WRITE 2

READ 2

READ 3

READ 4

WRITE

READ

READ

READ

WRITE

WRITE

READ 1

WRITE 1

READ

WRITE

a

b

Fig. 1.12 (a) Strong ordering; (b) Global orders to enforce

issues the next operation. The completion of preceding operation is indicated by the
return data or acknowledgment. The program order is maintained due to the strict
order between the shared memory operations and sequential order is maintained by
read-modify-write memory operation in the system.

The sequential memory consistency model does not allow the performance
optimizations [3] in the hardware (write buffer, cache, interconnection network)
and in the software (compiler reordering, register allocation) due to the strict order
enforcement on the shared memory operations. As a result relaxed memory con-
sistency models emerged that permit such optimizations. The relaxed consistency
models relax the program order requirement to allow the possible reordering in
the shared memory operations by the system optimizations. The shared memory
operations may not complete according to the program order. The overall program
correctness is ensured by enforcing ordering constraints on a subset of memory
operations. We consider the two relaxed consistency models (weak and release
consistency) which relax the strict program order requirement and allow reordering
in the shared memory operations.

1.4.5.2 Weak Consistency

The weak consistency model (also called weak ordering) was proposed by Dubois
et al. [14] which classifies shared memory operations as synchronization and data

www.manaraa.com

22 A. Jantsch et al.

DATA

SYNCHRONIZATION

DATA

SYNCHRONIZATION

DATA

SYNCHRONIZATION

DATA

DATA

SYNCHRONIZATION

SYNCHRONIZATION

SYNCHRONIZATION

a
b

Fig. 1.13 (a) Weak Ordering; (b) Global orders to enforce

operations. Synchronization operations are related to the special synchronization
variables (locks, semaphores) in the shared address space. The lock must be gained
exclusively in the multi-processor shared memory systems. Data operations are
the load-store operations related to the ordinary shared variables. According to the
weak consistency model all previously issued outstanding data operations must be
completed before the issuance of synchronization operation. Similarly, previously
issued outstanding synchronization operations must also be completed before the
issuance of any data operation as depicted in Fig. 1.13a. The weak consistency
model ensures the final consistent result of the program execution in the multi-
processor systems. The weak consistency model enforces some global orders on
the shared memory operations as shown in Fig. 1.13b. The enforcement of these
global orders on the shared memory operations ensures the program correctness in
the weak consistency model with the permitted relaxation in data operations.

The transaction counter (TC) based approach [3, 27, 28] is adapted for the
realization of the weak memory consistency model in the DME based multi-core
systems. The counter is implemented in the DME hardware in each node to keep
track of the outstanding data operations issued between the two synchronization
points. It is incremented and decremented by the issuance and completion of data
operations correspondingly. It is not affected by the synchronization operations.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 23

ACQUIRE - L1

CRITICAL SEC 1 CRITICAL SEC
NON-CRITICAL SEC

ACQUIRE

RELEASE

RELEASE - L1

ACQUIRE - L2

CRITICAL SEC 2

RELEASE - L2

NON-CRITICAL SEC 1

NON-CRITICAL SEC 2

NON-CRITICAL SEC 3

CRITICAL SEC
NON-CRITICAL SEC

ACQUIRE RELEASE

RELEASE ACQUIRE

a

b

Fig. 1.14 (a) Release consistency model; (b) Global orders to enforce

1.4.5.3 Release Consistency

The release consistency model proposed by Gharachorloo et al. [15] is a refinement
of the weak consistency and distinguishes synchronization operations as acquire and
release operations. It removes the following two unnecessary ordering constraints
and allows further relaxation in the program order as compared to the weak
consistency model:

• Non-critical section data to synchronization
• Synchronization to non-critical section data

According to the release consistency model, an acquire operation must be performed
before the issuance of any data operation in the critical section (CS) and in the non-
critical section (NCS) after it. All the data operations in the critical and non-critical
sections prior to the release operation must be completed before the issuance of the
release operation as shown in Fig. 1.14a. The release consistency model enforces
the global orders on the shared memory operations as given in Fig. 1.14b.

The release memory consistency model can be realized by using two transaction
counters in the hardware of DME in each node of the platform [26]. Two counters
in each node correspond to two types of data operations. The transaction counter 1
(TC1) keeps track of outstanding data operations issued in the non-critical section of

www.manaraa.com

24 A. Jantsch et al.

code by the processor. The transaction counter 2 (TC2) keeps track of outstanding
data operations issued within the critical section. Each counter is incremented
and decremented by the issuance and completion of the relevant data operations
correspondingly. Both these counters are not affected by the acquire and release
synchronization operations. “TC1=0” indicates the completion of all previously
issued outstanding data operations in the non-critical section of code. “TC2=0”
indicates the completion of all the previously issued outstanding data operations in
the critical section of code. The lock acquire operations do not check the counters at
the issuance time, while the release operations are not issued by the processor until
both these counters become zero.

1.5 Experiments

We have studied the DME behavior in a number of different experiments. In the
following we describe some of these experiments to show, that the usage of the
DME is feasible (Sect. 1.5.1), how the DME can cleverly be used to maximize
performance (Sect. 1.5.2), and the performance under synchronization constraints
(Sect. 1.5.3).

1.5.1 Viability Analysis

We map three applications, matrix multiplication, 2D radix-2 DIT FFT, and Wave-
front Computation, manually over the LEON3 processors, based on our proposed
hardware/software co-design flow. The matrix multiplication calculates the product
of two matrices, A[64,1] and B[1,64], resulting in a C[64,64] matrix and does
not involve synchronization. We consider both integer and floating point matrix
multiplication.

The data of the 2D radix-2 DIT FFT are equally partitioned into n rows stored on
n nodes respectively. The 2D FFT application performs 1D FFT of all rows firstly
and then does 1D FFT of all columns. There is a synchronization point between the
FFT-on-rows and the following FFT-on-columns.

Wavefront Computations are common in scientific applications. In Wavefront
Computation, the computation of each matrix element depends on its neighbors to
the left, above, and above-left. If the solution is computed in parallel, the computa-
tion at any instant forms a wavefront propagating through the processor array.

Figure 1.15 shows the performance speedup of the three applications. We
observe, that the multi-core NoC achieves fairly good speedup. When the system
size increases, the speedup increases almost linearly. The speedup Ω m is defined as
Ω m = T1core/Tmcore, where T1core is the single core execution time as the baseline,
Tmcore the execution time of m cores.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 25

Fig. 1.15 Speedup of matrix multiplication, 2D radix-2 DIT FFT and wavefront computation

For instance, the speedup for the matrix multiplication on the 8×8 system is
52.054, which is very close to the ideal speedup of 64. However, as the system
size increases, the speedup acceleration slows down. This is due to the growing
communication latency which increases linearly with the system size, limiting the
performance.

Note, that the speedup for the floating point matrix multiplication is higher than
that for the integer matrix multiplication, because, when increasing the computation
time, the portion of communication delay becomes less significant, thus achieving
higher speedup.

Wavefront Computation is synchronization-intensive. Its speedup increases more
slowly than Matrix Multiplication and 2D DIT FFT, because synchronization
overhead and communication delay become dominating as the network size is
scaled up.

Obviously, the speedup figures strongly depend on the application characteristics
and on the task partitioning and mapping. We could achieve very good speedup
results, because the four applications are inherently easy to parallelize and have
been mapped well. This is not true for many other applications. But the experiments
demonstrate, that, given applications that can be parallelized and mapped well onto
a multi-core platform, the DME, handling the memory access and communication,
is not limiting the speedup and does not constitute a bottleneck for system
performance.

www.manaraa.com

26 A. Jantsch et al.

Fig. 1.16 (a) Memory allocation for 2D DIT FFT, (b) conventional DSM organization, and
(c) Hybrid DSM organization with run-time partitioning

1.5.2 Performance Optimization

In the following experiment we show, how system performance can be improved by
exploiting specific features and the flexibility of the DME.

We implement a 2D radix-2 DIT FFT. As shown in Fig. 1.16a, the FFT data are
equally partitioned into n rows, which are stored on the n PM nodes, respectively.
According to the 2D FFT algorithm, the application first performs FFT on rows
(step 1). After all nodes finish the row FFT (synchronization point), the FFT on
columns are started (step 2).

We experiment with two DSM (Distributed Shared Memory) organizations.
One is the conventional DSM organization, as shown in Fig. 1.16b, for which all
FFT data are shared. The other is the hybrid DSM organization, as illustrated in
Fig. 1.16c. The data used for row FFT calculations at step 1 are located locally in
each PM node. After step 1, they are updated and their new values are to be used for
column FFT calculations at step 2. We can dynamically re-configure the boundary
address (BADDR in Fig. 1.16) at run time, such that, the data are private at step 1
but become shared at step 2.

Figure 1.17 shows the speedup of the FFT application with the conventional
DSM organization, and performance enhancement of the hybrid DSM organization
with run-time partitioning. As we can see, when the system size increases from 1 to
64, the speedup with conventional DSM organization goes up from 1 to 48.776, and
the speedup with hybrid DSM organization improves from 1.525 to 55.070.

For the different system sizes the improvement of the hybrid DSM organization
is between 11.44% and 34.42%.

We can summarize the experiment as follows:

• Using run-time partitioning in hybrid DSM organization, a fast physical address-
ing scheme is performed in step 1 of the 2D DIT FFT and the entire virtual
address translation overhead is avoided.

• As the system size is scaled up, larger communication delay leads to the decrease
of performance improvement.

• The single PM node case has a higher improvement because all data accesses are
local and shared for the conventional DSM organization and private for the hybrid

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 27

Fig. 1.17 Speedup and performance improvement of 2D DIT FFT

DSM organization, and there is no synchronization overhead. Thus, the single
PM case also shows the bookkeeping and translation overhead of managing a
shared memory space.

1.5.3 Experiments for Memory Consistency

We analyze the performance of the three consistency models that are realized in
the multi-core system. The effects of network size on average and maximum code
latencies are investigated. As traffic pattern we use a set of synthetic workloads
running on each node in the platform. The sequence of transactions is the same
for each node and is shown in Fig. 1.18. Two nodes constitute hotspots: one for
the critical section (CS-node) and the other for the lock (SYNC-node). Each node
sends synchronization requests to the SYNC-node. The shared memory locations in
the CS-node are protected by the acquire and release operations to the lock in the
SYNC-node.

The average and maximum code execution time, which we call code latency,
for different network sizes is shown in Fig. 1.19. The code latency increases for all
the three consistency models as the network grows from a single core to 64 cores.
The average code latency for the release consistency model in the 8× 8 network
is about 236.59 times of the single core, whereas for the weak and sequential

www.manaraa.com

28 A. Jantsch et al.

(0,0)

Initially, int x, y,z = 0;

// Non-critical section1
x = data1;
Reg1 = x;

// Lock Acquire
Acquire (L);

// Critical Section
y = data2;
Reg2 = y;

// Lock Release
Release(L)

// Non-critical Section2
z = data3;
Reg3 = z;

CS
NODE
(0,1)

(0,2)

(1,0)
SYNC
NODE
(1,2)

(2,0) (2,1) (2,2)

(1,1)

a
b

Fig. 1.18 Each node generates the same sequence of transactions

Average Code Latency (RC)

Average Code Latency (WC)
Max Code Latency (RC)

Average Code Latency (SC)
Max Code Latency (SC)

C
od

e
E

xe
cu

tio
n

T
im

e
(C

yc
le

s)

Network Size

RC : Release Consistency
WC : Weak Consistency
SC : Sequential Consistency

1x1(1)

100000

80000

60000

40000

20000

0
1x2(2) 2x2(4) 2x4(8) 4x4(16) 4x8(32) 8x8(64)

Max Code Latency (WC)

Fig. 1.19 Execution times of a test program on different architectures

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 29

consistency models it is 241.96 and 353.67 times, respectively. The difference
between the observed code latencies become obvious as the network size grows.
It is due to the further overlapping and program order relaxation in the release
consistency as compared to the weak consistency model. The sequential consistency
does not allow any kind of reordering in the shared memory operations. The weak
consistency model allows the reordering among the shared memory operations in
the critical section or non-critical section. The release consistency model permits
overlapping among the data operations in the critical and non-critical sections. The
release consistency improves the performance by 2.3% and 49.5% on average in
the code latencies over the weak and sequential consistency models, respectively, as
the system grows from a single core to 64 cores.

1.6 Conclusion

Due to the pace of technology development, computation and communication is
operated more and more in parallel. Indeed, the degree of parallelism grows at the
rate of Moore’s law. As a consequence, memory access must follow suit and become
more parallel. 3D stacking and other emerging technology facilitates this trend, but
has to be matched by a corresponding adaptation in the memory architecture.

We propose a programmable hardware block, called a Data Management Engine,
that supports this architectural adaptation in multiple ways. The DME can realize an
address space partitioning into private-shared and into local-remote sections. While
the local and remote memory is determined by the platform at design time, the
partitioning into private and shared sections can be flexibly modified at run-time,
and can be used for performance optimizations. Among the many other potential
DME applications we present virtual address space management, synchronization,
cache coherency, and memory consistency. We also demonstrate the feasibility of
the DME in several experiments.

References

1. The Aeroflex Gaisler webpage. http://www.gaisler.com/.
2. Z-RAM technology backgrounder. http://www.innovativesilicon.com/en/pdf/z-ram.pdf.
3. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.

IEEE Computer, 29:66–76, 1996.
4. Bradford M. Beckmann and David A. Wood. Managing wire delay in large chip-multiprocessor

caches. In MICRO 37: Proceedings of the 37th annual IEEE/ACM International Symposium
on Microarchitecture, pages 319–330, Washington, DC, USA, 2004. IEEE Computer Society.

5. Xiaowen Chen, Shuming Chen, Zhonghai Lu, and Axel Jantsch. Area and performance opti-
mization of barrier synchronization on multi-core network-on-chips. In 3rd IEEE International
Conference on Computer and Electrical Engineering (ICCEE), Chengdu, China, November
2010.

www.manaraa.com

30 A. Jantsch et al.

6. Xiaowen Chen, Zhonghai Lu, Shuming Chen, and Axel Jantsch. Run-time partitioning
of hybrid distributed shared memory on multi-core network-on-chips. In The 3rd IEEE
International Symposium on Parallel Architectures, Algorithms and Programming (PAAP
2010), Dalian, China, December 2010.

7. Xiaowen Chen, Zhonghai Lu, Axel Jantsch, and Shuming Chen. Handling shared variable
synchronization in multi-core network-on-chip with distributed memory. In International SOC
Conference, Las Vegas, Nevada, September 2010.

8. Xiaowen Chen, Zhonghai Lu, Axel Jantsch, and Shuming Chen. Supporting distributed shared
memory on multi-core network-on-chips using a dual microcoded controller. In Proceedings
of the confernece for Design Automation and Test in Europe, Dresden, Germany, March 2010.

9. Xiaowen Chen, Zhonghai Lu, Axel Jantsch, and Shuming Chen. Supporting efficient
synchronization in multi-core NoCs using dynamic buffer allocation technique. In Proceedings
of the IEEE Annual Symposium on VLSI, Kefalonia, Greece, July 2010.

10. Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In MICRO 36: Proceedings
of the 36th annual IEEE/ACM International Symposium on Microarchitecture, page 55,
Washington, DC, USA, 2003. IEEE Computer Society.

11. Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing replication, commu-
nication, and capacity allocation in cmps. SIGARCH Comput. Archit. News, 33(2):357–368,
2005.

12. David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architecture - A
Hardware/Software Approach. Morgan Kaufman Publishers, 1999.

13. Pierre Guironnet de Massas and Frédéric Pétrot. Comparison of memory write policies for
NoC based multicore cache coherent systems. In DATE ’08: Proceedings of the conference on
Design, automation and test in Europe, pages 997–1002, New York, NY, USA, 2008. ACM.

14. Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access buffering in
multiprocessors. In Proceedings of the 13th Annual International Symposium on Computer
Architecture, pages 434–442, June 1986.

15. K. Gharachorloo, D. Lenoski, J. Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory consistency and event ordering in scalable shared-memory multiprocessors. Com-
puter Architecture News, 18(2):15–26, June 1990.

16. J. Hennessy, M. Heinrich, and A. Gupta. Cache-coherent distributed shared memory: perspec-
tives on its development and future challenges. Proceedings of the IEEE, 87(3):418 –429,
March 1999.

17. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 3rd edition, 2003.

18. Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and Stephen
W. Keckler. A NUCA substrate for flexible CMP cache sharing. In ICS ’05: Proceedings of
the 19th annual international conference on Supercomputing, pages 31–40, New York, NY,
USA, 2005. ACM.

19. Axel Jantsch, Matthew Grange, and Dinesh Pamunuwa. The promises and limitations of 3-D
integration. In Abbas Sheibanyrad, Frédéric Pétrot, and Axel Jantsch, editors, 3D Integartion
for NoC-based SoC Architectures, Integrated Circuits and Systems, chapter 2. Springer, 2011.

20. C. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache structure for wire-
delay dominated on-chip caches. In Proceedings of the 20th International Conference on
Architectural Support for Programming Languages and Operating Systems, 10 2002.

21. L. Lamport. How to make a multiprocessors computer that correctly executes multiprocessors
programs. IEEE Transaction on Computers, C-28(9):690–691, September 1979.

22. Feihui Li, Chrysostomos Nicopoulos, Thomas Richardson, Yuan Xie, Vijaykrishnan
Narayanan, and Mahmut Kandemir. Design and management of 3 D chip multiprocessors using
network-in-memory. ACM SIGARCH Computer Architecture News, 34(2):130–141, 2006.

23. C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the processor-memory
performance gap with 3D IC technology. Design and Test of Computers, 22(6):556–564,
November-December 2005.

www.manaraa.com

1 Memory Architecture and Management in an NoC Platform 31

24. Gabriel Loh. 3D-stacked memory architectures for multi-core processors. In Proceedings for
the 35th ACM/IEEE International Symposium on Computer Architecture (ISCA), June 2008.

25. G. L. Loi, B. Agarwal, N. Srivastava, S.-C. Lin, and T. Sherwood. A thermally-aware
performance analysis of vertically integrated 3-D processor memory hierarchy. In Proceedings
of the 43rd Desigfn Automation Conference, 2006.

26. Abdul Naeem, Xiaowen Chen, Zhonghai Lu, and Axel Jantsch. Scalability of transaction
counter based relaxed consistency models in NoC based multicore architectures. ACM
SIGARCH Computer Architecture News, December 2009.

27. Abdul Naeem, Xiaowen Chen, Zhonghai Lu, and Axel Jantsch. Scalability of weak consistency
in NoC based multicore architectures. In Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), Paris, France, June 2010.

28. Abdul Naeem, Xiaowen Chen, Zhonghai Lu, and Axel Jantsch. Realization and performance
comparison of sequential and weak memory consistency models in network-on-chip based
multi-core systems. In Proceedings of the 16th Asian Pacific Design Automation Conference
(ASP-DAC), Tokyo, Japan, January 2011.

29. T.G. Rauscher and P.M. Adams. Microprogramming: A tutorial and survey of recent
developments. Computers, IEEE Transactions on, C-29(1):2 –20, January 1980.

30. Chuan Seng Tan. Three-dimensional integration of integrated circuits - and introduction. In
Abbas Sheibanyrad, Frédéric Pétrot, and Axel Jantsch, editors, 3D Integartion for NoC-based
SoC Architectures, Integrated Circuits and Systems, chapter 1. Springer, 2011.

31. R. Stanley Williams. How we found the missing memristor. IEEE Spectrum, December 2008.
32. W. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the obvious.

SIGARCH Comput. Archit. News, 23(1):20–24, 1995.
33. Michael Zhang and Krste Asanovic. Victim replication: Maximizing capacity while hiding

wire delay in tiled chip multiprocessors. In ISCA ’05: Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 336–345, Washington, DC, USA,
2005. IEEE Computer Society.

34. Yuang Zhang, Zhonghai Lu, Axel Jantsch, Li Li, and Minglun Gao. Towards hierarchical
cluster based cache coherence for large-scale network-on-chip. In Proceedings of the 4th IEEE
International Conference on Design & Technology of Integrated Systems in Nanoscale Era,
Cairo, Egypt, April 2009.

www.manaraa.com

Chapter 2
Application-Specific Multi-Threaded Dynamic
Memory Management

Sotirios Xydis, Alexandros Bartzas, Iraklis Anagnostopoulos,
and Dimitrios Soudris

Abstract This chapter presents the methodology and the corresponding software
framework developed to systematically explore the design space of Multi-Threaded
Dynamic Memory Management (MTh-DMM). We developed two exploration
approaches: (a) a two-phase constraint-orthogonal and (b) a single-phase aggressive
exploration methodologies. Pareto optimal configurations are generated considering
various design targets. Experimental results evaluate the solution quality delivered
by the proposed exploration approaches and by state-of-the art general purpose dy-
namic memory management solutions, based on a real-life multi-threaded network
application.

2.1 Introduction

Recent advances in VLSI process technology enabled the shifting from single-
processor System-on-Chip (SoC) to Multi-Processor SoC (MPSoC) architectures.
The emerging market of new embedded devices seems to highly adopt the new
architectural template [1, 19] to integrate multiple services and heterogeneous
applications such as multimedia, telecommunication protocols and wireless network
communications. The increased number of processing elements enables the ex-
ploitation of parallelism in coarser levels (thread-level) than the Instruction-Level-
Parallelism (ILP) found in uni-processor SoCs. Thus, multi-threaded applications
are becoming increasingly prevalent for the next generation of embedded systems.

The porting process of multi-threaded applications to MPSoCs is a difficult task.
They come from the general-purpose domain require increased interaction with the

S. Xydis • A. Bartzas (�) • I. Anagnostopoulos • D. Soudris
National Technical University of Athens, 9 Heroon Polytechneiou,
Zographou Campus, Greece
e-mail: sxydis@microlab.ntua.gr; alexis@microlab.ntua.gr; iraklis@microlab.ntua.gr;
dsoudris@microlab.ntua.gr

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 2,
© Springer Science+Business Media, LLC 2012

33

sxydis@microlab.ntua.gr
alexis@microlab.ntua.gr
iraklis@microlab.ntua.gr
dsoudris@microlab.ntua.gr

www.manaraa.com

34 S. Xydis et al.

environment, which raises their dynamism [14]. Multiple algorithms that need to
run concurrently on such devices impose complex memory access patterns that
may result in performance degradation and high energy consumption. For example,
in multimedia applications like video games, the unpredicted behavior of the user
causes varying inputs, which significantly vary the dynamically allocated memory
objects, leading to unexpected memory footprint variations unknown until runtime.

Dynamic memory management (DMM) is a critical component in MPSoCs since
the dynamic memory allocation often forms the main performance, and scalability
bottleneck of multi-threaded applications [15]. Also, it greatly affects the energy
and memory consumption of the overall system [8]. Extensive research has been
conducted for general-purpose dynamic memory allocators, which target either the
single processor or the multi-processor domain. However, embedded computing
involves stricter design constraints than general purpose one due to the limited
available resources. Thus, there is a need for application-specific customization
of the overall system’s management since usually there is a-priori knowledge on
the applications’ set or the application domain on which the embedded system has
to be operative. Customizing the decisions concerning the strategies, policies and
architecture of the dynamic memory manager improves performance [5, 9], heavily
optimizes power consumption compared to general-purpose dynamic memory
managers [8] and avoids memory fragmentation [10]. However, the specification
of the available DMM design space (DMM design decisions) and a corresponding
methodology for combining these decisions has been elaborated only for single-
processor systems running single-threaded applications [2]. Thus, it is reported
a semantic gap considering the extended design space of Multi-Threaded DMM
(MTh-DMM) and the proper methodologies for designing efficient custom dynamic
memory managers for MPSoCs.

In this chapter, we address the open issue of application-specific multi-threaded
dynamic memory management by proposing a comprehensive methodology which
enables the designer to explore, traverse and evaluate through the decisions of the
new design space in an efficient manner. The exploration methodology searches and
evaluates the available decisions of the DMM design space and returns decision
combinations. Given the multi-threaded application to be executed onto an MPSoC,
the proposed exploration methodology delivers a custom dynamic memory manager
based on the proper combination of decisions found into the extended DMM design
space. Such decisions made both at the intra-thread level and the inter-thread level
in order to customize the dynamic memory manager according to both each thread
atomic allocation behavior and their existing interaction.

2.2 Heap-Based Dynamic Memory Management

The memory pool responsible for allocation or deallocation of arbitrarily-sized
blocks in arbitrary order that will live an arbitrary amount of time is called heap.
In order to conceptually position the heap region, Fig. 2.1 depicts a typical memory

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 35

SYSTEM (i.e. KERNEL)

SHARED LIBRARIES (*.so)

HEAP

COMPILED CODE (.text)

INITIALIZED DATA (.data)

UN-INITIALIZED DATA (.bss)

STACK (THREAD N)

User invisible memory

brk pointer

STACK (THREAD 1)

Fig. 2.1 Memory layout of process address space

layout of a running process, assuming a C application running onto a Linux-OS (the
organization of process address space is determined by the Operating System (OS)
and the programming language). In brief, the “.text” segment stores the compiled
code of the program that forms the running process, the “.data” segment contains
global and static variables used by the program that are initialized. while the “.bss”
segment contains all the uninitialized global variables and static variables that are
initialized to zero by default. The stack is the section of memory allocated for
variables within functions or temporary storage of information, using a Last In First
Out (LIFO) scheme.

Between the stack and the “.bss” segment, it lays the heap memory pool. The
heap is the memory region that the dynamically allocated data objects are stored.
Since the size of the allocated data is unknown until the runtime, the heap is
managed by dividing it into blocks able to service the runtime memory request. The
unallocated (free) blocks are organized based on dynamic data structures (i.e. single
linked lists, double link lists, trees, etc.), usually called free-lists. In many cases
several free-lists exist inside the heap address space. During an allocation request
the dynamic memory manager searches the free-lists in order to find an available
free block to return. In order to reduce the searching overhead, a common practice
is to manage free-lists that handle memory blocks of a specific size, called fix-
sized free-lists or fixed-lists. By this way the searching is reduced since the manager
knows where to search first. Fixed-lists can be viewed as a caching mechanism of
the dynamic memory manager. The size of the heap during the execution is defined
by the brk pointer. Thus, each time the application requests for memory allocation,

www.manaraa.com

36 S. Xydis et al.

the dynamic memory manager either returns a pointer to an unused block found
into the heap or requests for additional heap memory from the operating system
using the sbrk function (actually requests for moving the brk pointer).

Dynamic memory managers are operate on the heap memory space, being
responsible for organizing the dynamically allocated data into the heap and servicing
the application’s memory requests (allocation/deallocation) at run-time. In case of a
memory request for allocation of a new object the dynamic memory manager returns
to the application the pointer, which refers to memory position of allocated object.
In case of a memory request for deallocation of an already dynamically allocated
object, the dynamic memory manager returns to the application either a true or a
false value in respect to success of the deallocation process. In C/C++ programming
language dynamic memory management is performed through the malloc/new
functions for allocation and free/delete functions for deallocation, respectively.

2.3 MTh-DMM Performance Metrics

Historically, the efficiency of single-threaded dynamic memory managers was
evaluated according to conventional metrics such as performance and memory
fragmentation (internal and external). However, in the field of multi-threaded
dynamic memory managers both conventional and new defined metrics are required
in order to perform accurate evaluation of their efficiency [4]. That is because of new
design constraints are taken into account for the case of multi-threaded applications
i.e. scalability of the solution and avoidance of false sharing. Furthermore, design
constraints that come from the embedded computing community (i.e. energy
consumption) have to also be taken into account. Thus, in order to design efficient
multi-threaded dynamic memory allocator of the following metrics should have to
be considered:

1. Performance: A multi-threaded dynamic memory allocator should perform
memory operations (i.e., malloc and free) about as fast as a state-of-the-art
serial memory allocator. By this way, performance is guaranteed even when a
multi-threaded program executes on a single-processor. While in single-threaded
applications performance is affected mainly by the fit and search policies of the
allocator, in multi-threaded applications also the synchronization mechanisms
and strategies have a great impact in the allocator’s performance.

2. Scalability: A scalable multi-threaded dynamic memory allocator should guar-
antee that as the number of processors in the system grows, the performance of
the allocator also grows/scale linearly with the number of processors to ensure
scalable application performance. The un-scalable behavior of the memory
allocator makes it the bottleneck of the overall application.

3. Heap False Sharing: Heap false sharing refers to the situation in which threads
with distinct heaps inadvertently share data. For example, data allocated from

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 37

thread 1 into heap 1 are freed from of thread 2 into heap 2. In many access
patterns such a situation may impose extensive memory consumption. Consid-
ering a platform dependent view, heap corruption resembles the false sharing of
cache lines.

4. Memory Fragmentation: In general fragmentation is defined as the maximum
amount of memory allocated from the operating system divided by the maximum
amount of memory required by the application. In multi-threaded memory
allocators there are three types of fragmentation:

(a) Internal Fragmentation: It happens when the allocator returns a memory
block that is larger than the initial size request.

(b) External Fragmentation: It happens when a memory request cannot be served
even if there are available memory blocks that can serve the request if they
merged.

(c) Memory Blowup: This is a special kind of fragmentation found in multi-
threaded memory allocators. Specifically, it refers to the situation in which
the increase in memory consumption caused when a concurrent allocator
reclaims memory freed by the program but fails to use it to satisfy future
memory requests. It is defined as the maximum amount of memory allocated
by a given allocator divided by the maximum amount of memory allocated
by an ideal uni-processor allocator [4].

(d) Energy Consumption: This design metric comes from the field of embedded
computing in which battery lifetime forms a critical resource. Energy
consumption for DMM has a direct relation with the number of memory
accesses that the allocator performs to service a memory request.

2.4 Related Literature

This section presents a brief classification of the various MTh-DMM solutions [4]
based on the organization of the heap memory pool.1 Each multi-threaded allocator2

presented in the existing literature can be assigned to one of these classes. Figure 2.2
illustrates in an abstract manner the various heap organizations that each of the
dynamic memory management classes imposes. Grey areas depict the heap regions
that can be accessed in parallel from each thread. The following sections further
elaborated on each of the aforementioned multi-threaded allocator classes and
reference relative work and research activities.

1A similar taxonomy for single-threaded DMM can be found in the Wilson’s extensive report [25].
2In the reminder, we use interchangeably the terms allocator and dynamic memory manager.

www.manaraa.com

38 S. Xydis et al.

FixedList 1

FixedList 2

FixedList 3

FixedList 1

FixedList 2

FixedList 3

FixedList 1

FixedList 2

FixedList 3

3. Pure Private Heaps and
4. Private Heap with Ownership

FixedList 1

FixedList 2

FixedList 3

FixedList 1

FixedList 2

FixedList 3

FixedList 1

FixedList 2

FixedList 3

FixedList 1

FixedList 2

FixedList 3

FixedList 1

FixedList 2

FixedList 3

Per-Thread
Heap 1

Per-Thread
Heap 2

Per-Thread
Heap 3

Global Shared Heap
or

Shared Heap Hierarchy

Per-Thread
Heap 1

Per-Thread
Heap 2

Per-Thread
Heap 3

FreeList FreeList

FreeList FreeList FreeList

FreeList FreeList FreeList

1. Serial Single
Heap

2. Concurrent
Single Heap

5. Private Heaps with Threshold

Fig. 2.2 Heap organization schemes for MTh-DMM

2.4.1 Class A: Single Heap MTh-DMM

A.1 Serial Single Heap MTh-DMM assumes a global shared heap, protected
through locking before each (de)allocation request. Serialization of memory op-
erations and heavy lock contention are introduced, forming a serious bottleneck
in the case of multi-threaded applications. Since all the threads operate on the
same heap, false sharing is heavily induced. Many operating systems provide such
type of memory allocators in their default library [15]. Existing customization
methodologies [2, 5] can be applied in straightforward manner in this class of
allocators.

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 39

A.2 Concurrent Single Heap Allocators implement the heap as a concurrent data
structure, such as a concurrent B-tree [13, 21] or a freelist with locks either on each
free block or on the entire freelist [6, 7]. In the general case of random access
patterns, they present better scalability and performance characteristics than the
serial single heap allocators. The extensive use of locks makes them quite expensive
considering the energy and performance. Each synchronization operation requires
one or more memory access, so their extensive use contributes in a negative way to
overall energy consumption. Customization is expected to have a positive impact in
both performance and energy metrics of such allocators.

2.4.2 Class B: Multiple Heap MTh-DMM

B.1 Pure Private Heaps Allocators assume that each thread has its own pri-
vate heap used for every dynamic memory operation and never accesses any
other [11, 18]. In terms of performance and scalability, pure private heaps form
a very efficient solution since in an ideal situation minimum lock contention
is induced. However, if the application exhibits producer-consumer allocation
patterns between different threads, memory consumption is unbounded [4]. Thus,
exploration and customization is required to evaluate the efficacy of pure private
heaps DMM solutions in an application specific basis.

B.2 Private Heaps Allocators with Ownership extends the pure private heaps class
with heap ownership mechanisms [17, 20, 24]. False heap sharing is eliminated,
since threads deallocate memory to the heap that originally allocated it. Each
thread or group of threads operates on its own heap and the lock contention is
small delivering efficient performance and scalability. In an application-specific
context, the ownership mechanisms and the various thread groupings (thread-to-
heap mapping mechanisms) introduce new trade-off parameters that have to be
explored for optimized custom MTh-DMM.

B.3 Private Heaps Allocators with Threshold move blocks of memory between
a hierarchy of heaps shared by multiple threads [4, 16, 23]. When a private heap
has more than a certain amount of free memory (crossing a threshold value), some
portion of the free memory is moved to a shared heap. This strategy bounds memory
blowup to a constant factor, since no heap may hold more than some fixed amount of
free memory [4]. However, the threshold value need to be carefully determined since
a rather small value will initiate a lot of memory movement degrading performance,
while a rather large threshold may induce large memory waste. Such trade-offs
can be efficiently utilized through customization of the allocator according to the
application specific needs.

www.manaraa.com

40 S. Xydis et al.

2.5 A Modular C++ Library for Application-Specific
MTh-DMM

In order to design application specific dynamic memory manager a number of
decisions and strategies have to been explored. Each decision forms a differ-
ent implementation choice. Different combination of decisions delivers different
dynamic memory managers with different tailoress to the application specific needs.
Thus, the specification of all the possible decisions and strategies concerning
dynamic memory allocation has to be defined in order to be able to explore various
alternatives.

The enumeration of these decisions defines the complete design space of dynamic
memory management. All of them should affect as less as possible the other ones,
i.e. be as orthogonal as possible. Thus, this set of possible decisions must cover
exhaustively any kind of potentially profitable (In the Pareto trade-off sense, where
more than one metric is considered and a solution can be very better in general,
but not for one axis) dynamic memory scheme that exists currently in the literature.
Furthermore, we propose to use taxonomy of decisions based on orthogonal trees at
two different abstraction levels.

Based on the above analysis, Atienza et al. [2] have proposed a taxonomy of
the available decisions through a set of decision trees to manage DMM customiza-
tion. They build a parameterizable design space based on the following decision
taxonomy:

1. Intra-Heap Block Structure Decisions ⇒ Parameters: {Block Structure, Block
Sizes, Block Recorded Info}: It handles the data structures which organize the
memory blocks inside each heap of the MTh-DMM.

2. Intra-Heap Pool Organization Decisions ⇒ Parameters: {Pool Structure, Pool
Structure Based on Block Size, Pool Structure Based on Blocks Order}: It define
per heap pools’ organization i.e. single pool, one pool per size, traversing
order etc.

3. Intra-Heap Block Allocation/Deallocation Decisions ⇒ Parameters: {Allo-
ation Search Order, Allocation Fit, Destination Pool}: It deals with the opera-
tions to satisfy the DM allocation and deallocation requests.

4. Intra-Heap Splitting/Coalescing Decisions ⇒ Parameters: {Block Size, Split-
ting/Coalescing Frequency, Splitting/Coalescing Triggering Criterion}: It for-
malizes the decisions to handle the current coalescing and splitting blocks
techniques [25], i.e. the threshold logic for coalescing and splitting the blocks.

However, the aforementioned taxonomy covers only the design space of single
heap DMM for single-threaded applications (intra-heap level), which is rather
limiting for the multi-threading case. In order to provide customized DMM
implementations concerning multiple heaps, which is the case for multi-threaded
applications, we extended the single heap DMM design space to efficiently model
and capture decisions found in the field of multi-processor and multi-threaded
application domain. We introduced a new decision taxonomy for the inter-heap

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 41

design space [26] which models heap decisions shared for all threads such as heap
organization, thread to heap mapping policies etc. The union of inter-heap [26] and
intra-heap [2] design spaces returns the overall MTh-DMM design space. The inter-
heap decision taxonomy along with its parameters is summarized in the following
lines:

1. Architectural Scheme Decisions ⇒ Parameters: {Heap Architecture, Global
Heap}: It determines the way the dynamic memory allocator organizes and
architects its heaps in order to exploit the available thread-level parallelism into
memory management.

2. Data Coherency Decisions ⇒ Parameters: {Synchronization Mechanisms}:
It deals with the existence or not and the structure of the synchronization
mechanisms in order to ensure the data coherency in each heap.

3. Inter-Heap Allocation Decisions ⇒ Parameters: {Thread to Heap Mapping}:
It manages the way in which threads allocate memory in the inter-thread level.
Allocation in this level is strongly connected with decisions which consider both
the thread grouping in order to share a heap and the thread to heap mapping.
Allocation decisions of finer granularity i.e. fit policies etc are included into the
intra-thread design space.

4. Inter-Heap Deallocation Decisions ⇒ Parameters: {Free Block Movement
Strategy, Destination Heap}: It includes trees concerning the ownership aware,
deallocation of each memory block and placement decisions for the deallocated
blocks.

5. Inter-Heap Fragmentation Decisions ⇒ Parameters: {Threshold, Number of
Moved Free Blocks}: It manages the potential memory blowup of the multi-
threaded application and consider decisions in order to reduce or bound the worst
memory blowup.

The MTh-DMM design space is platform independent and applicable to any
MPSoC or NoC platform after a platform dependent refinement. In order to enable
modular construction of various MTh-DMM configurations, a C++ library has
been developed implementing each decision as a separate component. Modular
construction enables the hierarchical composition of the MTh-DMM configuration.
Thus, heap management is structured hierarchically across differing management
layers (each layer implementing a different policy/mechnanism) rather than with
monolithic pieces of code. Heap layers has been originally proposed in [5]. As
suggested in [5], we also utilize C++ mixins [12] to build the layers found into
the inter-heap design space. Mixins introduce the concept of multiple inheri-
tance overcoming the limitation of single class hierarchy. Each heap layer of the
inter- and intra-heap design space corresponds to a mixin that provides a malloc
and free method interface to its parent class for allocating/deallocating memory
enhanced with proper management mechanisms corresponding to its dedicated
functionality.

Figure 2.3 depicts a simple exemplary scenario of building application specific
MTh-DMM. We assume the threadtest.c multi-threaded benchmark configured to
invoke three threads. Each thread allocates memory blocks of size either 8 or 40

www.manaraa.com

42 S. Xydis et al.

FixedList[8]

FixedList[40]

GenericFreeListHeap

PosixLock[1]

PosixUnlock[1]

FixedList[8]

FixedList[40]

GenericFreeListHeap

PosixLock[2]

PosixUnlock[2]

FixedList[8]

FixedList[40]

GenericFreeListHeap

PosixLock[3]

PosixUnlock[3]

List-Based Thread-to-Heap Mapping:
Thread 0 Intra Heap 0
Thread 1 Intra Heap 1
Thread 2 Intra Heap 2

Intra Heap 0 Intra Heap 1 Intra Heap 2

Fig. 2.3 Abstract architectural description of the application specific MTh-DMM

bytes and deallocates only its own blocks. Given the aforementioned allocation
behavior, we assume an application specific dynamic memory manager that ac-
commodates a multiple heaps architecture. Specifically, we consider a MTh-DMM
with three heaps where each thread is instructed to allocates and deallocate data to
only one of the heaps (inter-heap level customization). Each of the heaps is further
customized with two fixed size freelists (8-byte and 40-byte respectively) and a
generic freelist (intra-heap level customization).

Figure 2.4 shows the code fragment implementation of the application specific
allocator composed with the C++ mixins of our library. Specifically, the FIXEDLIST
(N) definition implements the structure of generalized fixed size freelist. The
function mapFunctionCustom handles the mapping of sizes into the allocator by
padding memory sizes requests either to 8 bytes or 40 bytes if the size of allocation
request is smaller than 8 or 40 byte respectively. If the requested size is larger
than 40 bytes no padding is performed. The RootHeap implements the interface
of the allocator to the sbrk() function of the OS in order to request memory when
there is no available in the dynamic memory manager. The AdaptLockHeap layer
imposes the synchronization interface for memory manager by properly locking and
unlocking the malloc and free memory requests of the application. A simple lock
mechanism, specifically a Posix mutex [11], handles the synchronization through
the PosixLockType component. ThreadHeap0, ThreadHeap1, ThreadHeap3 are the

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 43

Fig. 2.4 Code fragment implementing the MTh-DMM of Fig. 2.3 based on C++ mixins

private per-thread heaps. The ThreadSelector layer implements a distributed the
modulo hash function in order to map thread IDs to heap IDs. The per-thread
heaps are combined together and the final MultipleHeaps allocator implements the
desired application specific dynamic memory manager. It should be noticed that the
three per-thread heaps are identical due to the threadtest application that considers

www.manaraa.com

44 S. Xydis et al.

all the threads to do the same job in parallel. Following the template depicted in
Fig. 2.4, customization of each per-thread heap can be done easily by customizing
the ThreadHeap0, ThreadHeap1, ThreadHeap2 heaps.

2.6 A Framework for MTh-DMM Exploration

The goal of MTh-DMM exploration is to generate Pareto sets [22] of customized
MTh-DMM, tailored to the designer’s constraints and the application’s specific
needs. In this section, we introduce the exploration framework that enables auto-
mated code generation and evaluation of customized MTh-DMM configurations.
The framework is structured on the partition of the MTh-DMM design space into
the inter- and intra-heap design subspaces. The MTh-DMM exploration framework
integrates the following components:

1. The inter-heap exploration tool that automatically generates the inter-heap
decision vectors and the source code for each MTh-DMM configuration.

2. The intra-heap exploration tool that automatically generates the intra-heap
decision vectors and the source code for each MTh-DMM configuration.

3. The MTh-DMM C++ library implementing the decisions of the MTh-DMM
design space in a modular manner (Sect. 2.5).

4. The automated analysis tools.

Based on the aforementioned framework, we developed two exploration variants.
A two-phase MTh-DMM exploration approach that explores both the inter- and
intra-heap design space and an aggressive single-phase MTh-DMM exploration that
explores only inter-heap decisions considering pre-configuration of the intra-heap
decisions. In the remainder of this section, we present the two exploration variants
and we analyze the tools of the MTh-DMM exploration framework.

2.6.1 Two-Phase Constraint-Orthogonal MTh-DMM
Exploration

The two-phase exploration is guided by the observation that inter-heap decisions
are shared since they concern the management of the overall allocated heaps of
the MTh-DMM in a global manner, while intra-thread design space decisions
concerns the management of each allocated intra-heap individually. Thus, the inter-
thread level includes decisions of globalized and shared policies, while intra-thread
level defines heap local customization policies. Since the policy semantics are
orthogonal for the inter- and intra-thread design spaces, we partitioned the problem
of exploring and designing custom multi-threaded dynamic memory managers into
two constraint-orthogonal problems [26]. The first problem (phase 1) refers to the

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 45

4. Overall Inter- and Intra-Heap Pareto
Configurations

Mem. Footprint

E
n

er
g

y

Mem. Footprint

#A
cc

es
se

s

DMM Mem.
Footprint

#D
M

M
 A

cc
es

se
s

3. Constrained Intra-Heap Exploration

Intra-Thread DTs
C++ MixinLayers

1. Max. Free-lists
2. Split/Coalesce Decisions
3. Fit policies
4. Search Order Policies

Intra-Thread
Structures DT Prunning

Intra-Thread Exploration

Configuration Vectors
Generation

Automated Code
Generation

Inter-Heap
Analysis

Allocator Configuration
Profiling and

Application
…………………………….
…………………………….
…………………………….

Profiling

MTh-DMM

Statistics Extraction
Pareto Analysis

1. Inter-Heap Exploration

Inter-Thread DTs
C++ Mixin Layers

1. Heap Architectures
2. Synchronization
3. Thread to Heap
4. Heap Ownership
5. Heap Thresholds

Inter-Thread
Structures DT Prunning

Inter-Thread Exploration

Configuration Vectors
Generation

Automated Code
Generation

Fixed Intra-Heap
Configuration

2. Inter-Heap Pareto Constraint
Propagation

100

200

300

400

20000 40000 60000 80000

Inter-Thread Pareto Configurations

Inter-to Intra-Heap
Constraint Propagation

Intra-Heap
Analysis

Fig. 2.5 Four-phase constraint-orthogonal exploration methodology

exploration of inter-thread decisions, while the second one refers to exploration
decisions available in intra-thread design space (phase 2). The inter-heap MTh-
DMM exploration problem generates a Pareto optimal set of solutions (we silently
consider multi-objective optimization for the MTh-DMMs). These Pareto configu-
rations are propagated as constraints to the intra-thread level exploration. Thus, local
heap customization decisions are explored over global Pareto decisions. In this way,
we manage to the handle the complexity of customizing at the intra-heap level each
possible inter-thread configuration.

The four-phase constraint-orthogonal exploration methodology is depicted in
Fig. 2.5. In an abstract manner, the major steps of the proposed exploration
methodology are summarized as follows:

1. Given the dynamic application, its native source code is annotated with proper
profiling constructs that capture the dynamic memory behavior of the application.
The software designer performs this task manually.

2. Inter-heap level exploration is then performed in order to automatically generate
the source code of valid MTh-DMM solutions. The MTh-DMMs configurations
are linked with the dynamic application’s source code and each solution is
compiled and evaluated based on various metrics. A Pareto analyzer is invoked
in order to extract the Pareto optimal inter-thread level MTh-DMM solutions.
These Pareto optimal solutions form the “inter- to intra-heap” level constraints
and they are propagated to the intra-thread level exploration.

3. Intra-thread level exploration is invoked customizing each heap individually
found in the propagated inter-thread Pareto solutions. Automatic code generation
produces valid intra-heap customized MTh-DMM solutions for each Pareto
optimal point. The intra-heap level customized MTh-DMMs are linked again
with the dynamic application’s source code and each solution is re-compiled and
re-evaluated. The Pareto analyzer is invoked again and the combined intra- and

www.manaraa.com

46 S. Xydis et al.

inter-thread level Pareto optimal MTh-DMM solutions are extracted and returned
to the designer as the final customized MTh-DMM solutions. Having the Pareto
optimal solutions the designer selects the MTh-DMM solution, which satisfies
their design constraints.

2.6.2 Single-Phase Aggressive Inter-Heap MTh-DMM
Exploration

In the two-phase exploration methodology the final Pareto DMM configurations
are extracted evaluating DMM configurations twice (one time per each design
space level). However, the evaluation procedure (multiple compilations and exe-
cutions/simulations of the dynamic application) is an extremely time consuming
task. Furthermore, the large number of intra-heap decisions imposes a huge
number of possible configurations to be explored (i.e. up to 19.000.000 intra-heap
configurations for exhaustive exploration of a two heap DMM architecture). Thus,
the elimination of the second (intra-heap) exploration and evaluation phase seems
a very attractive approach especially in cases that strict design-time constraints are
imposed to the design team. However, by simply eliminating the intra-thread level
DMM customization far from optimal solutions are generated.

We propose an aggressive access-oriented customization approach which elimi-
nates the need of exploring the intra-thread level design decisions without degrading
the quality of final solutions concerning the number of total memory accesses. We
achieve this by analyzing the impact of major intra-thread decisions onto the number
of memory accesses of the DM manager and by aggressively customize the intra-
thread decisions during inter-thread exploration.

We recognize two major decisions that affect the number of memory accesses
performed by the DMM: (i) The number of fixed-sized freelists and (ii) the
allocation fit strategy. The more the fixed-sized freelists the higher the possibility
a memory block to be allocated with only one memory access. In the same sense,
in case that malloc requests a memory block of size different than available a free-
blocks in the free-lists, then the first fit allocation strategy guarantees that the least
number of memory accesses will be performed in order to discover free memory to
allocate.

The single-phase exploration strategy relies in the aggressive customization of
the fixed intra-thread configuration which is utilized from the code generation
module during inter-heap exploration. Figure 2.6 depicts the component, which
enables this aggressive exploration approach. Thus, the internal structure of each
heap is customized to include fixed-size free-lists of all the dominant block sizes
requested by the dynamic application. In addition, each heap adopts a first fit
allocation strategy. Independently from the thread-to-heap mapping, the number
heaps and the of MTh-DMM’s heap architecture decisions, each inter-thread
solution produced by this aggressive exploration will include this type of heaps.

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 47

2. Overall Pareto Configurations

Mem. Footprint

E
n

er
g

y

Mem. Footprint

#A
cc

es
se

s

DMM Mem. Footprint

#D
M

M
 A

cc
es

se
s

Allocator Configuration
Profiling and Evaluation

Multi-Threaded
Application

…………………………….
…………………………….
…………………………….

Code Instrumentation -Profiling

Multi-Threaded Dynamic
Memory Manager

Statistics Extraction
and

Pareto Solution Analysis

1. Inter-Heap Exploration

Inter-Heap
C++ Mixin Layers

1. Thread Clustering
2. Heap Architectures Range
3. Synchronization Mechanisms
4. Threshold Percentages Range
5. Free Block Movement Range

Initialize Inter-Thread
Structures

Interdependent-Aware
Prunning

Inter-Thread Exploration

Configuration Vectors Generation

Automated Code
Generation

of a MTh-DMM Module
per Configuration

Vector

Aggressively
customized

Fixed Intra-Thread
Configuration

Intra-Heap Pre-configuration

1. Allocating one FixedList per dominant size
2. First Fit Allocation strategy
3. No Coalesce/Split mechanisms

Fig. 2.6 Two-phase constraint-orthogonal exploration methodology

2.6.3 Tool A: Inter-Heap Exploration

Inter-heap exploration searches for optimal combinations of design decisions at the
inter-heap level for the dynamic application under study. In order to reduce the huge
number search space, the exploration procedure has been extended to incorporate
solution pruning based on the interdependencies of the inter-heap decisions [26].
Assuming a straightforward inter-thread level exploration procedure for a dynamic
application consisting of five threads, there are 544.320 DMM configurations that
have to be explored and evaluated. The incorporation of the solution pruning during
the exploration process reduces the number of DMM solutions that are worthwhile
to be examined down to 67.655 configurations. Assuming uniform generation and
evaluation delays for each DMM configuration, the proposed pruning methodology
offers a speedup in exploration time up to x8.

The designer can either guide the exploration procedure by setting proper ranges
to the inter-heap exploration parameters or let the tool perform exploration with
its default parameter values. For example, in case that a number of thread to
heap clusters have been a-priori decided based on platform specific constraints,
the designer can force the inter-thread DMM exploration tool to not evaluate

www.manaraa.com

48 S. Xydis et al.

all the available thread-to-heap mappings, reducing significantly the explorations’
runtime. After the determination of the exploration parameters (user guided or tool
default), the exploration script generates the MTh-DMM solution set. Each solution
is a different configuration of a dynamic memory manager. The configuration
vectors are fed into an automated code generator module that produces the C++
implementation of each dynamic memory manager according to the specified
decisions. The code generator is linked with a C++ software library that contains the
software implementations of each decision found into the inter-heap decision trees.
During this level of customization, the library includes the decisions concerning
the inter-heap design space (intra-heap specific DMM decisions are not taken into
account). Each intra-heap defined into the inter-thread level configuration vector
is considered pre-defined. We considered a structure consisting of a first-fit based
general heap for primary allocation/deallocation services extended with a general
FIFO-based freelist. Thus, each heap defined into the inter-thread configuration
vector follows the above description. During the intra- thread level exploration step,
this heap definition will be refined and customized for each heap individually found
into the inter-thread Pareto optimal solutions.

2.6.4 Tool B: Profiling and Evaluation

The tool developed for the evaluation of various DMM configurations is actually
used for the evaluation of both inter- and intra-heap customized solutions. We
automatically collect and analyze statistics of the dynamic application when various
DMM managers are invoked, through proper instrumentation. The instrumentation
consists of the insertion of proper profiling constructs, which are implemented as
part of an advanced profiling library [3]. Each automatically generated MTh-DMM
solution is evaluated according to the following statistics:

1. The number of memory accesses (both of the overall application and of the DMM
manager isolated),

2. The maximum memory footprint requested by the both the dynamic application
or the DMM manager individually,

3. The execution time for the overall application,
4. The per-thread predominant block size (information used during intra-thread

exploration and customization).

After the collection of the proper statistics for each examined DMM solution, a
Pareto analyzer module is invoked in order to extract the solutions, which present
the most efficient trade-offs (Pareto solutions). In case that the statistics collection
is performed to evaluate the inter-heap customized DMM solutions, the extracted
Pareto optimal points form the Pareto constraints to be propagated to the intra-thread
level exploration tool. In case that the evaluation is performed onto the intra-heap
level customized DMM solution, the extracted Pareto curve includes the final Pareto
optimal DMM configurations which are returned to the designer.

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 49

2.6.5 Tool C: Inter-Heap Exploration

The intra-heap exploration tool has similar software architecture with the inter-heap
one. It is invoked only in the two-phase constraint-orthogonal exploration approach
and performs the extra refinement/customization of the inter-heap Pareto optimal
solutions. Each inter-heap Pareto solution is propagated to the intra-thread explo-
ration tool forming its constraints. Since each inter-heap Pareto solution is formed
from differing inter-heap level decisions, intra-heap exploration customizes the
internal structure of each instantiated heap. We developed two heuristic strategies
considering intra-heap exploration:

1. An access-oriented (AO) heuristic and
2. A footprint-oriented (FO) heuristic.

The intra-heap heuristics are based on the traversing guidelines proposed in
[2] for single-threaded and single processor customization. In the memory access-
oriented heuristic the main goal of exploration is to find customized intra-heap
organizations with low memory accesses overhead. In the memory footprint oriented
heuristic the main goal of exploration is to find intra-heap customized solutions with
low requirements in memory size.

The AO heuristic excludes from the exploration the intra-heap decisions that
inherently increase the number memory accesses. Thus, splitting and coalescing
decisions are not taken into account during exploration since they both require
an increased number of accesses in order to determine whether they applied and
to generate the coalesced/splitted blocks. In the same sense, first-fit strategy is
preferred in comparison to the corresponding best-fit strategies which consume
many memory accesses to traverse the dynamic data type structures. In addition,
the instantiation of fixed-sized free-lists inside each heap has positive impact on the
number of memory accesses. In case that there is not a fixed-sized freelist available
in the heap instantiation, then the allocation has to traverse the dynamic data type
structures in order to find the first available free block.

The FO heuristic excludes from the exploration decisions that inherently increase
the memory wastage. Splitting and coalescing decisions are both taken into account
for various ranges of interest, since both target to lowering the memory waste by
generating at the runtime new proper memory blocks for the dynamic memory
requests. In the same sense, best fit and exact de/allocation strategies invoked for
exploration in comparison to the first fit strategy, which is excluded. By searching
for better block fittings the memory footprint is reduced since the better the
fitting the lower the memory waste during allocation (through reducing internal
fragmentation). As in the memory accesses-oriented heuristic, the instantiation of
fixed-size free-lists inside each heap has positive impact on the maximum requested
memory footprint. In case of free blocks being accommodated into fixed-sized
freelists then a memory request for allocation of that size will be served with zero
memory waste (no invocation of internal fragmentation).

www.manaraa.com

50 S. Xydis et al.

2.7 Case Study: A Multi-Threaded Wireless Application

We experimentally evaluate the proposed exploration methodology and the
corresponding tool flow based on a real-life case study of a dynamic multi-
threaded wireless application as the one in [3]. The application consists of 5 kernels
which are triggered by wireless streams. Each kernel corresponds to a thread and
communicates asynchronously with the other threads in a Linux multi-threaded
environment. The threads dynamically allocate and deallocate data according to
the characteristics of the incoming network trace. The distribution of the incoming
packet sizes is shown in Fig. 2.7a, whereas the size distribution of the allocated
blocks in Fig. 2.7b.

The exploration methodologies, presented in Sect. 2.6, has been applied to the
aforementioned network application. At first, inter-heap level exploration has been
performed. A solution space of 67.655 valid and semantically disjoint MTh-DMM
configurations has been generated.

Figure 2.8 depicts the three Pareto curves generated after the implication of the
two-phase exploration. The customization of inter-heap Pareto solutions is graph-
ically depicted through the inter-heap Pareto curve shifting towards MTh-DMM
solutions with either less memory accesses (in case of AO heuristic) or lower
required memory footprint (in case of FO heuristic).

In Fig. 2.8b, the Pareto curve generated by the two-phase AO exploration
methodology has been overlapped to the one generated by the aggressive one. Fol-
lowing the aggressive exploration, a curve shifting towards higher quality solutions
is depicted. This Pareto curve shifting delivered by the aggressive exploration does
not mean that the two-phase exploration (both inter- and intra-thread customization)
is worthless. Pareto solutions delivered by the aggressive inter-thread exploration
are also included into the solution space of the two-phase exploration. However,
the intra-thread access-oriented heuristic exploration eliminated the examination of
these solutions. By properly adjusting the bounds of the intra-thread access-oriented
heuristic to accommodate the examination of a larger number of MTh-DMM
solutions of the same or higher quality are expected to be delivered in the expense
of larger exploration’s runtime.

We have also compared custom implementations of MTh-DM managers with
Windows-XP Kingsley [15] and Hoard [4] allocators (Fig. 2.9). We considered four
variants of custom MTh-DMMs. Specifically, we considered a custom serial heap
(Non-Pareto), a custom pure private heaps allocator (Non-Pareto), a custom Hoard-
like DM manager (Non-Pareto) and best custom FO MTh-DMM solution extracted
from the final Pareto curves (Fig. 2.8). Figure 2.9 shows the efficiency of custom
MTh-DMM solution generated by the two-phase exploration methodology. In terms
of number of memory accesses (metric proportional to the energy consumption), the
custom FO MTh-DMM delivers an average reduction of 46K in memory accesses
(Fig. 2.7). In terms of memory footprint in Fig. 2.7, the custom FO MTh-DM
configuration is the second best solution after Hoard allocator with an average
footprint reduction of 8.8KBytes. Hoard’s efficiency in memory footprint is due
to its internal heap organization with a large set of size-bins.

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 51

Fig. 2.7 Multi-threaded application characterization. (a) Network packet size distribution,
(b) Block sizes distribution [3]

www.manaraa.com

52 S. Xydis et al.

Fig. 2.8 Multi-threaded application characterization. (a) Network packet size distribution,
(b) Comparing the solution quality of two- and single-phase explorations for the AO case

8780000

8790000

8800000

8810000

8820000

8830000

8840000

8850000

8860000

8870000

8880000

Kingsley Serial Custom Serial

Custom HoardCustom Pure Private Heaps Pareto Custom FO

Hoard Regular

MTh-DMM Configurations

#M
em

. A
cc

es
se

s

2105000

2110000

2115000

2120000

2125000

2130000

2135000

2140000

M
em

. F
o

o
tp

ri
n

t
(#

B
yt

es
)

MTh-DMM Configurations
Kingsley Serial Custom Serial

Custom HoardCustom Pure Private Heaps Pareto Custom FO

Hoard Regular

a b

Fig. 2.9 Comparative results for Kingsley-XP [15], Hoard [4] and various custom MTh-DM
managers

2.8 Conclusions

In this chapter, we presented an exploration methodology and the software frame-
work for application specific dynamic memory management targeting the multi-
threaded embedded applications. A software C++ library has been developed that
implements the design decisions regarding customized dynamic memory manage-
ment. Furthermore, we proposed two exploration variants, namely a two-phase
exploration methodology complement with various heuristics and a single-phase
aggressive one to efficiently traverse and explore through design space. Specialized
software tools have been developed in order to support the full automation of both
exploration approaches. The efficiency on generating customized multi- threaded
dynamic memory managers have been evaluated through extensive experimental
results and comparisons.

www.manaraa.com

2 Application-Specific Multi-Threaded Dynamic Memory Management 53

References

1. S. Agarwala et al. A 65nm C64x+ Multi-Core DSP Platform for Communications Infrastruc-
ture. In Proc. of ISSCC, pages 262–601. IEEE Press, 2007.

2. D. Atienza et al. Systematic Dynamic Memory Management Design Methodology for Reduced
Memory Footprint. ACM Trans. Des. Autom. Electron. Syst. (TODAES), 11(2):465–489,
Apr. 2006.

3. A. Bartzas et al. Enabling run-time memory data transfer optimizations at the system level
with automated extraction of embedded software metadata information. In Proc. of ASP-DAC,
pages 434–439, 2008.

4. E. Berger et al. Hoard: A scalable memory allocator for multithreaded applications. SIGPLAN
Not, 35(11), Nov. 2000.

5. Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing high-performance
memory allocators. In In Proceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI, pages 114–124, 2001.

6. B. Bigler et al. Parallel dynamic storage allocation. In Proc. of ICPP, pages 272–275, 1985.
7. C. Schlatter Ellis and T. J. Olson. Algorithms for parallel memory allocation. International

Journal of Parallel Programming, 17(4):303–345, 1988.
8. D. Atienza, S. Mamagkakis, M. Leeman, F. Catthoor, J. M. Mendias, D. Soudris, and

G. Deconinck. Fast system-level prototyping of power-aware dynamic memory managers for
embedded systems. In Proc. of PACT, page, 2003.

9. D. Grunwald, and B. Zorn. CustoMalloc: efficient synthesized memory allocators. Softw.
Pract. Exper., 23(8):851–869, 1993.

10. D.Atienza, S.Mamagkakis, F.Catthoor, J.M. Mendias, and D.Soudris. Memory Management
Design Methodology for Reduced Memory Footprint in Multimedia and Wireless Network
Applications. In Proc. of DATE, 2004.

11. F. Garcia, J. Fernandez. POSIX thread libraries. Linux Journal, page 36.
12. G. Bracha and W. Hook. Mixin-based inheritance. In Proc. of OOPSLA, pages 303–311, 1990.
13. A. Iyengar. Parallel dynamic storage allocation algorithms. In Proc. of PDP, 1993.
14. L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy efficiency of embedded sys-

tems by application-specific memory hierarchy generation. IEEE Design & Test of Computers,
():74–85, Apr. 2000.

15. M. R. Krishnan. Heap: Pleasures and pains. Microsoft Developer Newsletter, 1999.
16. P. E. McKenney and J. Slingwine. Efficient kernel memory allocation on shared memory

multiprocessor. In Proc. of USENIX, pages 295–305, 1993.
17. P. Larson, M. Krishnan. Memory allocation for long-running server applications. In Proc.

of the ISMM, 1998.
18. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.

In Proc. of FOCS, pages 356–368, Nov. 1994.
19. K. Hirata and J. Goodacre. ARM MPCore; The streamlined and scalable ARM11 processor

core. In Proc. of ASP-DAC, pages 747–748. IEEE Computer Society, 2007.
20. Solaris 9 Reference Manual man pages for mtmalloc. http://docs.sun.com/.
21. T. Johnson. A concurrent fast-fits memory manager. Technical Report TR91-009, University

of Florida, Department of CIS, (), 1991.
22. V. Pareto. Manuale di Economia Politica. Picola Biblioteca Scientifica, Milan, 1906,

Translated into English by Ann Schweir (1971), Manual of Political Economy, MacMillan,
London, 2008.

23. V. Vee and W. Hsu. A scalable and efficient storage allocator on shared memory multiproces-
sors. In Proc. of I-SPAN, pages 230–235, 1999.

24. W. Gloger. Dynamic memory allocator implementations in Linux system libraries.
http://www.dent.med.uni-muenchen.de/ wmglo/malloc-slides.html, 2002.

www.manaraa.com

54 S. Xydis et al.

25. P. R. Wilson et al. Dynamic storage allocation, a survey and critical review. In Proc. of IWMM,
1995.

26. Sotirios Xydis, Alexandros Bartzas, Iraklis Anagnostopoulos, Dimitrios Soudris, and Kiamal
Pekmestzi. Custom mutli-threaded dynamic memory management for multiprocessor system-
on-chip platforms. In ICSAMOS ’10: Proceedings of Embedded Computer Systems: Architec-
tures, Modeling and Simulation, pages 102–109, jul. 2010.

www.manaraa.com

Chapter 3
Power Management Architecture in McNoC

Jean-Michel Chabloz and Ahmed Hemani

Abstract In this chapter we present the power management architecture of the
McNoC platform. The power management architecture of McNoC offers distributed
Dynamic Voltage Frequency Scaling (DVFS) and power down services to the
platform at a fine level of granularity, allowing independent setting of frequency
and supply voltage to all switch and resource nodes in the platform. The design style
enables hierarchical physical design and solves the clock-domain-crossing problem
with a solution based on rationally-related frequencies, which avoids the overhead
associated with handshake. The architecture allows arbitrary power management
regions to be defined and region-wide power management commands affecting
all nodes in a region can be issued by the software layer that we call as Power
Management Intelligence (PMINT).

3.1 Introduction

The design of the McNOC power management architecture has been motivated by
several factors related to VLSI engineering effort and technology limitations:

1. In modern chips, latency insensitive hierarchical physical design is needed to
eliminate the need for global clock balancing and chip level timing closure [1–3].
The state-of-the art practice of flat physical design incurs large turnaround time
that not only increases the engineering cost but also restricts effective design
space exploration besides preventing reuse in form of hard IPs.

J.-M. Chabloz • A. Hemani (�)
ES Department, School of ICT, KTH, Isafjordsgatan 39, FORUM 120, 16440 Kista, Sweden
e-mail: chabloz@kth.se; hemani@kth.se

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 3,
© Springer Science+Business Media, LLC 2012

55

chabloz@kth.se;
hemani@kth.se

www.manaraa.com

56 J.-M. Chabloz and A. Hemani

2. Efficient and distributed Dynamic Voltage and Frequency Scaling is needed to
reduce power consumption [4]. Implementing Dynamic Voltage and Frequency
Scaling also requires the ability to safely and efficiently communicate across
different clock and voltage domains [5].

3. To enable platform level reuse for widely varying use cases, it is essential to
enable the possibility of defining arbitrary power management region boundaries.
This decision can be made at build time, boot time or even runtime.

4. Complexity of the next generation McNoC-like platforms requires distributed
power management rather than a centralized power management [4].

3.1.1 McNoC Overview

The main features of the power management architecture of the McNoC plat-
form are:

• Latency-insensitive hierarchical physical design style
• Globally-Ratiochronous, Locally-Synchronous clocking
• Dynamic Voltage and Frequency Scaling
• Distributed power management
• Programmable voltage and frequency domains

An overview of McNoC is shown in Fig. 3.1. McNoC is a computing platform
based on the Nostrum Network-on-Chip [6, 7]. Every resource node contains a
processing unit, a memory unit and a Data Management Engine (DME) which acts
as a memory management unit and interfaces the node with the network. The switch
nodes are synchronous. A power management architecture has been built on top of
McNoC by introducing a wrapper around every node. The wrapper is used to ensure
safe communication between nodes and to allow frequency and voltage regulation.
The access point to provide the power services is given by the Power Management
Unit (PMU), which controls a Voltage Control Unit (VCU) and a Clock Generation
Unit (CGU), respectively used to control the voltage and the frequency in the node.
Power Management Units are controlled by the Power Management INTelligence
(PMINT), a controlling software entity residing in one of the nodes of the platform,
which enforces the energetic policies. The Always-on LOgic In Node (ALOIN) unit
present in every node remains on even when a node is powered down and is used
to wake up the node. McNoCs CGU, VCU, PMU and ALOIN are described in
Sects. 3.2.2, 3.2.3, 3.2.5 and 3.2.6. An overview of McNoCs architecture is given in
Sect. 3.2.1.

3.1.2 Latency-Insensitive Hierarchical Physical Design Style

The McNoC platform targets next-generation, multi-million gates VLSI systems
in which a globally-synchronous assumption is nearly impossible to implement

www.manaraa.com

3 Power Management Architecture in McNoC 57

S(1,1)

DME

Proc Mem

PMU
CGUVCU fgiVgi

fV

CCGU

CVCU

PMU
CGUVCU fgiVgi

cinRcinS

cin

c
i
n
W

c
i
n
E

ALOIN A
LO

IN

R(1,1)

S(1,2)

R(1,2)

S(1,3)

R(1,3)

S(2,1)

R(2,1)

S(2,2)

R(2,2)

S(2,3)

R(2,3)

fgi

Vgi

GRLS Transmitter
GRLS Receiver

fV

cinN

Switch

R−port
W

−
po

rt

E
−

po
rt

S−port

N−port

PMINT

Fig. 3.1 McNoC overview

or comes with a huge penalty in terms of engineering effort, loss of power and
performance [8] and most importantly is not compatible with the needs of modern
power management based on DVFS [1, 2]. Preserving the globally-synchronous
paradigm requires design of globally-balanced clock trees that is proving to be im-
practical even for present-day 10M+ gates SoCs and will be practically impossible
for next-generation 100M+ gates SoCs [5]. These large SoCs are assembled from
pre-designed IPs and sub-systems. Architecturally, these IPs are independent but
when assembled physically, change in one IP can increase the load on the global
clock or cause it to be routed differently, which disturbs the timing relationship of
signals to other IPs with respect to clock and requires a chip level timing closure
[8]. This chip level timing closure, especially when required to do for multi-modes
multi-corners is a significant factor in the NRE cost. The desired solution would be
if each IP’s timing was not affected by the change in global clock or the timing of
other IPs with which it interacts. In other words, a latency insensitive design style
would eliminate the chip level timing closure and allow a truly hierarchical physical
design methodology.

3.1.3 Globally-Ratiochronous, Locally-Synchronous Clocking

The problem of achieving latency insensitivity in many respects boils down to that of
safe data communication between two communicating functionalities – abstracted
as IPs above. The truest form of latency insensitivity is achieved by having

www.manaraa.com

58 J.-M. Chabloz and A. Hemani

asynchronous communication, which completely eliminates the clock. While
fully-asynchronous design has been achieved [9] it remains a niche design style
that is hard to apply in the general case and is not compatible with the established
synchronous-design-style-based SoC design tools and methods used in indus-
try [10]. Globally-Asynchronous Locally-Synchronous (GALS) [11–13] design
styles are a compromise and introduce asynchronicity in a restricted sense at global
level, while retaining a synchronous design style at local level – local within
an island (IP or a sub-system). This design style however comes with a severe
performance penalty in the form of round-trip delay that is required for request-
acknowledge signalling for every data transfer [14].

The power management architecture of McNoC is based on a clocking strategy
that restricts the clock frequencies to be rationally-related, i.e. all clocks on
the chip run at frequencies which are submultiple of a physical or ideal fre-
quency fH . This restriction allows a significant simplification in the implementation
of synchronizers used to bridge rationally-related clock domains and, most impor-
tantly, it eliminates the round trip delay penalty associated with traditional GALS
implementation styles. The clocking strategy is called Globally-Ratiochronous,
Locally-Synchronous (GRLS) [14]. It introduces a limited and acceptable loss of
flexibility compared to GALS [15], in which no restriction is made on the local
clock frequencies. The synchronizers are described in Sect. 3.2.4.

3.1.4 Dynamic Voltage and Frequency Scaling

To deploy Dynamic Voltage Frequency Scaling (DVFS) in McNoC, the GRLS
clocking strategy is coupled with quantized voltage levels [16–18], as will be
discussed in Sect. 3.2.3. Up to 4 global supply voltages are distributed throughout
the chip. The decision to use 4 VDDs is based on our investigation that suggests
that the overhead of more than VDDs compared with the increased flexibility is
not justifiable. The supply voltage of every node can be switched to any of the
four global supply voltages using PMOS power switches built into every node.
Multiple supply voltages and power switches are supported by state-of-the-art
synthesis/place-and-route flows [19]. Some limited and acceptable loss of flexibility
is introduced compared to a solution allowing complete freedom in the choice of the
supply voltages [15]. The latter approach would be hard to apply in a real system
because it would require a voltage regulator in every node, which would carry a very
high overhead and complicate the design process [20].

3.1.5 Distributed Power Management

The combination of the GRLS design style and the quantized supply voltages
allows the design of low-overhead communication interfaces [14,21] and frequency/

www.manaraa.com

3 Power Management Architecture in McNoC 59

voltage regulators [15], i.e. all the components needed for effective and efficient
power management. These components can be integrated at relatively fine levels
of granularity. Unlike GALS, for which the high latency of the communication
interfaces is a bottleneck [22, 23], the GRLS design style allows isolation of every
switch and resource node into an independent power management domain, so
that the frequency and the supply voltage of every node can be independently
set. Traditionally, power management techniques in NoC-based platforms have
never allowed independent power management for the switch nodes, restricting the
benefits of distributed DVFS to the resource nodes only [24, 25].

The power services that are offered to every node are DVFS operating point
change and shutdown/wakeup. Because shutting down switches in the NoC disrupts
the communication fabric of McNoC, an always-on block is inserted in every node
to wake it up.

3.1.6 Programmable Voltage and Frequency Domains

While the power management architecture in McNoC allows potentially to treat
every node as a separate power management domain, for performance and com-
plexity reasons the platform can be dynamically organized into power management
regions at boot time or even at runtime. Nodes belonging to the same region always
run at the same frequency and are always all awake or all asleep. This is justified
because nodes belonging to the same power management region have a coherent
need from the power management perspective. This also simplifies the working of
the Power Management INTelligence (PMINT), the power management controller
normally implemented as a software entity residing in one of the nodes of the
platform. PMINT issues a single command to one of the nodes in a target region
to change the DVFS point of all nodes in the region, or shut them all down.

3.2 Power Management Architecture

3.2.1 McNoC Overview

McNoC is built upon the existing Nostrum Network-on-Chip [6, 7]. Nostrum is
based on simple, low-overhead switches employing X-Y routing and supports
regular mesh topologies. The output ports of the switches on the border of the
network are closed back on the switches themselves (see Fig. 3.1), which allows all
switches in the network to have the same structure. As an example, the east output
port of a switch on the east border of the network is fed back to the east input port of
the same switch. Nostrum switches are bufferless and based on deflection routing.
Packets are never dropped but can be misrouted when contention is encountered.

www.manaraa.com

60 J.-M. Chabloz and A. Hemani

Buffers are only inserted at the resource-network interface, where packets can be
delayed for entrance in the network. The properties of the routing algorithm ensure
that the Nostrum NoC cannot get into deadlock or livelock [7].

In McNoC, up to 4 global clocks, indicated as clkg0...clkg3 and up to 4 global
supply voltages, indicated as Vg0...Vg3, are distributed throughout the chip to allow
generation of the local frequency f and supply voltage V in every node. The
frequencies of the global clocks are all rationally-related, i.e. they are all submultiple
of a frequency fH .

Every node (switch or resource) of the McNoC platform is enclosed into a
power management wrapper. The wrapper has the purpose to create the local
clock clk running at frequency f and the supply voltage V from the global clocks
and global voltages, to give access to the power services and to guarantee safe
inter-node communication. A simplified schematic structure of the wrapper is
shown in Fig. 3.1. To keep the presentation simple, the figure does not show any
connection for the ALOIN blocks. Every power management wrapper contains a
Clock Generation Unit (CGU), a Voltage Control Unit (VCU), GRLS Transmitter
and one GRLS Receiver for every bidirectional link, Power Management Unit
(PMU) and a Always-on LOgic In Node (ALOIN). A brief description of these
block is followed by a more detailed description of each of these blocks:

• The Voltage Control Unit (VCU) selects one of the global voltages and generates
the voltage V for the node. It is controlled by the PMU.

• The Clock Generation Unit (CGU) selects one of the global clocks, divide its
frequency by a programmable integer number and generates the frequency f for
the node. It is controlled by the PMU.

• The GRLS Transmitters and Receivers are the two ends of the GRLS in-
terfaces in charge of allowing safe communication between the nodes. They
are programmed by the Power Management Unit, which instructs them of the
frequencies of both the Transmitter and the Receiver node. The GRLS Receivers
also have the responsibility to identify incoming commands for the Power
Management Unit and deliver them to it. The Power management Unit can use a
GRLS Transmitter to send a command to a PMU in a neighboring node.

• The Power Management Unit (PMU) acts as an access point for the power
services. It is accessed by the Power Management INTelligence (PMINT),
a controlling entity which can be positioned in any resource node of the network.
The Power Management Unit implements the power management services by
controlling the CGU and the VCU, and coordinates with PMUs in neighboring
nodes to ensure that power management services are implemented correctly and
without packet loss.

• The Always-on LOgic In Node (ALOIN) is a block that is always kept oper-
ational, even when the node is powered down. The ALOINs are connected in
a network which runs parallel to the Nostrum NoC and which utilizes one-bit
links. The function of the ALOIN network is to wake up the nodes that have
been powered down.

www.manaraa.com

3 Power Management Architecture in McNoC 61

=?

=?

toggle
FF

E

toggle
FF

E

clkp

clkn

N−counter

N_LSBN=1?

init_count

mid_count

clkp
clkn
clkl

N odd:

clk

clk_sel<1>
clk_sel<0>

clksclkg1

clkg2

clkg3

Fig. 3.2 Structure of a Clock Generation Unit supporting three global clocks

3.2.2 Clock Generation Unit

In McNoC, there are two types of CGUs, one central and the other local. The central
CGU generates up to four global clocks clkg0...clkg3 running at rationally-related
frequencies fg0... fg3 and distributed throughout the chip using unbalanced clock
trees. If more than one clock is present, the frequencies of the global clocks should
all be submultiple of a frequency fH . fH is not necessarily a physical frequency but
is derived from the frequencies of the global clocks: as an example, if two global
clocks are present, with fg0 = 200 MHz and fg1 = 300 MHz, then fH = 600 MHz
and fH does not need to be distributed in the system. In McNoC, division ratios fH

fgi

up to 15 are supported.
In every node, a Clock Generation Unit (CGU) selects one among the global

clocks and divides its frequency by a programmable integer value to generate
the local clock clk running at frequency f . As a result, all local frequencies are
submultiple of fH . The area overhead of distributing multiple global clocks is
negligible compared to the area overhead of the local clock trees because the global
clock trees have a fanout equal only to the number of islands and, being unbalanced,
can be routed in the most convenient way. The structure of a CGU supporting three
global clocks is shown in Fig. 3.2.

The structure of the selection stage ensures that, when clk sel is changed to select
a new global clock, the previously-selected clock is first gated; only when all clocks
are gated, the newly-selected clock is ungated. Double-stage synchronizers are used
to make the system metastability-safe and glitch-free. This is necessary because the
global clock trees are unbalanced and no assumption is made on the arrival time

www.manaraa.com

62 J.-M. Chabloz and A. Hemani

Fig. 3.3 Power breakdown of a 2 mm × 2 mm, 90 nm chip with 25 equal-sized GRLS islands,
each containing 3,600 flipflops, with a single, 1 GHz global clock

of the global clocks at the local CGUs. The synchronizers introduce a two-cycles
latency when the global clock is changed but introduce no latency during normal
operation.

The divider stage divides the frequency of the selected clock clks by an integer
number N between 1 and 15. It is composed of a 4-bits LFSR counter having a
sequence of N states. init count contains the value of the counter right after it is reset
and mid count contains the value of the counter

⌈
N
2

⌉
cycles later. The comparators

outputs are used to generate the enable signals for a positive- and a negative-
edge-triggered toggle flipflops. When N is even, all edges of clk are synchronous
with rising edges of clks; the negative-edge-triggered flipflop never toggles while
the positive-edge-triggered flipflop toggles twice during a count sequence of the
counter. When N is odd, clk is obtained by combining the two clocks clkp and clkn,
each running at f

2 and in opposition of phase.

3.2.2.1 Overhead and Performance Analysis

Other implementations of the CGU are possible, but this solution was selected
because of its low overhead. In 90 nm ASIC technology, its area occupation is 140
NAND-equivalents. The CGU is built using only standard cells and is very fast in
changing its output frequency. In 90nm ASIC technology, the power consumption of
a CGU is 0.5 mW when it is locked on a global clock running at 1 GHz. Experiments
were conducted to estimate the power overhead of the CGU and the frequency
distribution system by considering a very fine-granularity, 2 mm × 2 mm, 90 nm
chip divided in 25 synchronous islands. With a single 1 GHz global clock and every
island containing 3,600 flipflops, the power breakdown depends on the average
frequency at which the islands are clocked. The power breakdowns for two cases
are shown in Fig. 3.3. The percentage overhead is higher when the average island

www.manaraa.com

3 Power Management Architecture in McNoC 63

Fig. 3.4 Simplified model
of a Voltage Control Unit

CL

IP

V

offoffon

IL

Vg2 Vg3Vg1

frequency is lower, which translates to lower power consumption in the local clock
net. The power breakdown shows that the power overhead of GRLS is reasonably
low even for very fine-granular systems and should be significantly better for more
realistic coarse granular system.

3.2.3 Voltage Control Unit

Up to 4 global supply voltages are generated in the Central Voltage Control Unit
(CVCU) using up to 4 voltage regulators and distributed throughout the chip.
Because of the reduced number of voltage regulators needed, a good solution
for the Central VCU is to use switching voltage regulators, very efficient but
expensive if they were implemented in each island. Alternatively, the voltages can
be generated off-chip. The number of supply voltages is limited to 4 because of
the pin requirements for multiple Vdds and the area overhead of the multiple Vdd
distribution grids.

A Voltage Control Unit (VCU) is instantiated in every node which contains power
switches and the logic necessary to drive them. Power switches and multiple power
rails are part of the state-of-the-art ASIC/SOC methodology and are supported by
all commercial place and route tools e.g. [19]. Having four Vdd rails instead of
one increases the area of the chip; a solution, consisting in distributing the Vdds in
different metal layers, was proposed in [15]. The metal stripes in the local islands
can be switched to one of the supply voltages or disconnected from the power
supply. A simplified model of a VCU is shown in Fig. 3.4. The node is modeled
as a current sink in parallel with a capacitance.

3.2.3.1 Overhead and Performance Analysis

The PMOS switches for power selection are designed as a trade-off between area
occupation and performance penalty.

www.manaraa.com

64 J.-M. Chabloz and A. Hemani

clkT

clkR

fT=fH/2 fR=fH/3
PC=3TT

PC=2TR

Fig. 3.5 Definition of the Periodicity Cycle PC

The maximum voltage drop on the single PMOS transistor that is on at any
time is given, in a linearized model, by IP

gon
, where IP is the peak current draw of

the node and gon the conductivity of the PMOS switches, which is proportional to
the number of power switches. Using the linearized alpha-model [26], the voltage
drop introduces a performance penalty that translates to a reduction of the maximal
working frequency from f to

f

(
1−α

IP

gon (V −VTH)

)

where α is the velocity saturation index of the technology, V is the nominal supply
voltage and VTH is the threshold voltage of the transistors.

Considering a 44.4mm2 node with a peak current of 18.48A, in 90 nm ASIC
technology a 15% performance hit can be guaranteed with a 5% area overhead for
each supply voltage. Other area-performance trade-offs are possible depending on
the node constraints. The parameter that drives the trade-off is the ratio R = IP

A , the
peak current consumption per unit of area. R is a parameter that does not necessarily
depend on the area of the node, which is roughly proportional to the number of gates
that constitute it.

Once the power switches are dimensioned, the conductivity of the PMOS
switches determines the time necessary for the node to change its supply voltage.
SPICE simulation shows that the same 44.4mm2 node can change its supply voltage
in ∼27 ns.

3.2.4 GRLS Transmitter and Receiver

The GRLS Transmitter and Receiver are based on the GRLS interface presented in
[14]. The GRLS interface exploits a property of rationally-related frequencies, i.e.
that the alignment between the clocks is the same every Periodicity Cycle PC, where
PC is the least common multiple between the periods of the Transmitter clock (clkT ,
running at frequency fT = 1

TT
) and the Receiver clock (clkR, running at frequency

fR = 1
TR

), as shown in Fig. 3.5. This property allows to design communication
interfaces that are much more efficient compared to GALS interfaces. In literature,
several attempts at designing interfaces for rationally-related frequencies can be

www.manaraa.com

3 Power Management Architecture in McNoC 65

found [27–29]; however, the only one [27] that constitutes a truly latency-insensitive
interface cannot be easily applied in a real environment because the interface is very
complex and requires transistor-level design [14].

3.2.4.1 Background

All GALS communication techniques that can be found in literature [12,30,31] are
based on the idea that the Transmitter should inform the Receiver before sending
it a data item, so that the Receiver can prepare for data reception [21]. The data
items can be sent only when the Transmitter knows that the Receiver is ready to
accept data. This inherently involves some form of handshake and carries a high
latency penalty because the analysis by the Receiver of the signals coming from
the Transmitter takes time and data cannot be transmitted until the analysis is not
complete.

Mesochronous communication is a subset of the GALS communication problem
in which the frequencies of the Transmitter and the Receiver are perfectly matched,
but their alignment is unknown [32]. There have been several mesochronous
synchronizers proposed in literature which are not based on handshake [33–35].
These solutions employ a fully-synchronous Transmitter which outputs data in every
clock cycle. The Receiver can sample data on both rising and falling clock edges:
one of the two is guaranteed to be secure for data sampling. To know on which edge
data should be sampled, a synchronization mechanism is used. The synchronization
mechanism, or learning phase, can be activated once upon reset or continuously
during operation.

The advantage of the learning phase approach is that the learning phase, which
normally takes time to complete, determines a clock edge on which data can be
sampled; when data is sent, the Receiver already knows when to sample it and data is
accepted with low latency. Unfortunately, a learning phase approach cannot be used
in GALS synchronizers because in a GALS communication problem no assumption
can be made on the frequencies of the Transmitter and the Receiver clocks. Thanks
to the periodic properties of rationally-related frequencies (the alignment between
the clocks is periodic with period PC), however, it is possible to build a learning-
phase-based interface for a GRLS system.

3.2.4.2 Structure

The conceptual structure of the GRLS Transmitter and Receiver are shown in
Fig. 3.6.

The interface [14] is based on a synchronous Transmitter which outputs data
on a subset of its rising clock edges. The clock edges on which data is output are
determined by a regulation algorithm [14] which is also periodic with period PC: if
a data item is sent at time t, another data item is sent at time t +PC. The regulation
algorithm also guarantees maximal throughput, i.e. one data item is output per clock

www.manaraa.com

66 J.-M. Chabloz and A. Hemani

clkT

clkT

synchr. &
1−stage

FIFO
clkR

clkR

R
ec

ei
ve

r

clkT

T
ra

n
sm

it
te

r

sn sp

clkT

clkT

strobe

clkR

PC

data

read

E strobe

FIFO

E

E

data

clkR

clkR

REG.

clkR

Strobe Analysis Stage

GRLS ReceiverGRLS Transmitter

fT=fH/2 fR=fH/3

Fig. 3.6 GRLS interface and relevant signals

cycle of the slowest of the two units. A zero-waitstate FIFO buffer is used to store
the data items until they can be output. If the Transmitter does not have anything to
send out on a output clock edge, then it sends out a dummy data item, marked by
setting an additional data line valid to zero. A strobe toggles between 0 and 1 every
time a new data item is sent out. The strobe travels through the channel and reaches
the Receiver, where it is continuously sampled on both positive and negative edges
of the Receiver clock. The strobe samples are synchronized to the Receiver clock
domain and analyzed. Using a specific strobe analysis mechanism [14], the Receiver
detects strobe transitions, i.e. it identifies when the strobe toggled and which was the
first clock edge on which the new data item that was sent out when the strobe toggled
could have been safely sampled. Because of the periodic properties of rationally-
related systems and the regulation algorithm, if a new data item was available to be
safely sampled at time t, then a new data item will be available for safe sampling
also at time t+KPC with K integer. The Receiver uses this knowledge to sample the
data items, i.e. it samples data items a time KPC after a strobe toggle was detected.
When the Transmitter sends out a data item, it finds the Receiver ready to accept it
and transmission happens with low latency. A communication example is shown in
Fig. 3.7.

3.2.4.3 Overhead and Performance Analysis

The overhead of the interface is 4 flipflops per data line [14], which is equal to the
overhead of state-of-the-art mesochronous communication interfaces such as STARI
[32]. The strobe analysis stage of the strobe requires only 140 Gate Equivalents in
90 nm technology.

www.manaraa.com

3 Power Management Architecture in McNoC 67

clkT

clkR

strobe

data

A B C

strobe tr.
C detected

strobe tr.
B detected

strobe tr.
A detected

PC=5TT

PC=3TR

data items are sampled 1
(or more) PC after a strobe
transition is detected

fT=fH/3 fR=fH/5

Fig. 3.7 Communication in a GRLS interface

Table 3.1 Average- and
worst-case latencies for
different values of NT = fH

fT

and NR = fH
fR

, in terms of

Receiver clock cycles

NT : NR

Worst-Case
latency (TR)

Average-Case
latency (TR)

NT = NR 1.000 0.500
NT > NR 1.000 0.500
2:3 1.667 0.722
2:5 1.800 0.820
3:7 1.857 0.806
5:11 1.909 0.789
4:17 1.941 0.888
12:17 1.706 0.708
16:17 1.941 0.555

The GRLS interface has ideal throughput, i.e. it allows to send out one data item
per clock cycle of the slowest of the two units [14].

Because a GRLS system does not rely on global synchronicity, latency figures
depend on the alignment between the clocks. Best-case, average-case and worst-case
latencies can be defined. For asynchronous FIFOs [36], the most widely-accepted
GALS interface [3, 37], best-case latency corresponds to 2 Receiver clock cycles,
average-case latency corresponds to 2.5 clock cycles and worst-case latency corre-
sponds to 3 clock cycles. For the GRLS interface, average- and worst-case latencies
are reported in Table 3.1.

3.2.5 Power Management Unit

The Power Management Unit (PMU) acts as an access point for the power
management commands issued by the Power Management INTelligence (PMINT).
One PMU is inserted in every node, and can be accessed using a 32-bit command

www.manaraa.com

68 J.-M. Chabloz and A. Hemani

024681012141618202224262830

ArgumentsOPCODE

Fig. 3.8 Structure of the power management commands

register. The DME in every node knows the physical location of every PMU and
encapsulates memory transactions bound for one PMU in a Nostrum packet bound
for the node in which the PMU resides. Once the packet reaches the node, the
GRLS Receiver on which the packet is received delivers it to the PMU. This
allows the physical structure of the network to be totally transparent to PMINT.
An API is provided to configure the Power Management Units and issue the power
management commands.

Power Management Units (PMUs) are accessible by PMINT software and also
by the other PMUs in the neighboring nodes. This is necessary for implementation
of the region-wide power management commands that requires coordination be-
tween Power Management Units in different nodes. To contact a neighboring PMU,
a PMU issues a memory transaction bound for the neighboring PMU, and outputs
the packet on the port on which it neighbors the target PMU.

Power management commands are organized as follows (see Fig. 3.8):

• bits 31-26: OPCODE
• bits 25-0: ARGUMENTS – dependent on the command.

3.2.6 ALOIN Network

When a node is powered down, a small portion of the GRLS wrapper remains
operational. This block is called ALOIN, for Always-on LOgic In Node. The
ALOINs are interconnected with a NoC structure that runs parallel to the Nostrum
NoC and are kept functional even when a region is powered down. ALOINs
are necessary because power down modes, when applied to switches, disrupt the
structure of the network and do not allow the wake-up command to take the same
path as all other commands, i.e. to be encapsulated in Nostrum packets and delivered
by the Nostrum network.

To justify the introduction of a new NoC running in parallel with Nostrum, the
ALOINs network is kept as simple as possible. The ALOIN signals have a one-bit
width, which is sufficient to implement the simple functionality of ALOIN, i.e. to
wake up nodes that were powered down. Unlike multi-bit signals, single-bit signals
can be safely synchronized using simple multistage synchronizers. By introducing
additional synchronization stages, the MTBF (Mean Time Between Failures) of the

www.manaraa.com

3 Power Management Architecture in McNoC 69

A A A

AA A

R R R

RRR

S

S S

A A A

A A A

SS

S

Fig. 3.9 The ALOIN network (A indicates ALOINs)

Fig. 3.10 The ALOIN block
in a resource node

CGU

VCU

Res

PMU

ALOIN

synchronizers can be arbitrarily increased at the expense of latency [38]. Signals that
toggle too often do not propagate correctly in multi-stage synchronizers. However,
because the functionality of the ALOIN network is very simple, the signals toggle
only once when a node is powered down and once when it is woken up.

Figure 3.9 shows how the ALOIN network runs in parallel with the Nostrum
NoC. Some details of the network, such as the synchronizers, are not shown to keep
the illustration simple.

The GRLS wrapper of a resource node is shown in Fig. 3.10.

www.manaraa.com

70 J.-M. Chabloz and A. Hemani

3.3 Power Management Services

The power management API of McNoC provides four power management
commands which can be directly accessed by the Power Management INTelligence
through the power management API. Other valid PMU commands are meant for
inter-node coordination and can be issued only by other Power Management Units.

The four commands that can be accessed by PMINT are:

• SETOPTION: used to set one configuration option of the Power Management
Unit. The command takes as a parameter a 6-bit value indicating the code of the
configuration option, and the value to which the configuration option should be
set.

• DVFSCHANGE: used to change the DVFS point of one region. The command
takes as a parameter the global clock which the CGU should select and the new
clock divider ratio.

• POWERDOWN: used to send to a power-down mode (clock gating, hibernation
or shutdown) a region. The command takes as argument a parameter indicating
the type of power-down mode (clock gating, hibernation or shutdown).

• WAKEUP: used to wake up a region from a power-down mode. Because power-
down modes disrupt communication in the NoC fabric (some switches may have
been powered down), the WAKEUP command is not sent to a node in the region
that should be woken up, but to a node that neighbors it, and then propagated
using the ALOIN network. It takes as argument the port on which the node
receiving the command neighbors the region that should be woken up.

The four Power Management Commands are discussed in the following sections,
along with different aspects of the functionality of McNoC.

3.3.1 SETOPTION: Power Management Unit Configuration
Options

Different configuration options can be set in the Power management Unit during
run time. The configuration options are set by PMINT issuing a SETOPTION
command, which is organized as follows:

SETOPTION(ID,VALUE)

The parameters of the SETOPTION command are:

• ID (6 bits): configuration option identifier
• VALUE (W bits): value to which the configuration option should be set

where W is the width in bits of the configuration option.
The configuration options that can be set in the Power Management Unit are

shown in Table 3.2.

www.manaraa.com

3 Power Management Architecture in McNoC 71

Table 3.2 Configuration options for the Power Management Unit

Option W Usage

gclkdiv[0] 4 Specifies using 4 bits (values 1-15) the ratio between fH and fg0

gclkdiv[1] 4 Specifies using 4 bits (values 1-15) the ratio between fH and fg1

gclkdiv[2] 4 Specifies using 4 bits (values 1-15) the ratio between fH and fg2

gclkdiv[3] 4 Specifies using 4 bits (values 1-15) the ratio between fH and fg3

Vdiv[0] 8 Specifies using 8 bits (values 1-255) the minimal clock division ratio
between fH and f that can be supported by Vg0.

Vdiv[1] 8 Specifies using 8 bits (values 1-255) the minimal clock division ratio
between fH and f that can be supported by Vg1.

Vdiv[2] 8 Specifies using 8 bits (values 1-255) the minimal clock division ratio
between fH and f that can be supported by Vg2.

Vdiv[3] 8 Specifies using 8 bits (values 1-255) the minimal clock division ratio
between fH and f that can be supported by Vg3.

PortType 5 Specifies using 5 bits the type of neighboring ports (S or N). For a
switch node, the five bits 4, 3, 2, 1 and 0 represent respectively: the
resource port, the north port, the east port, the south port and the
west port. For a resource node, bit 4 represents the switch port and
all other bits are unused. An S port is indicated with 0 and an N
port is indicated with 1.

RT 8 Number of cycles to which correspond the slowest round-trip to a
neighboring node, i.e. the time that it takes for a packet to reach a
neighboring node and for an ack to come back.

CWait 8 Number of cycles that it takes for all packets to evacuate the power
management region if no packet enters it.

A PMU that receives a SETOPTION command sets the value of the configuration
option indicated by ID to VALUE, then responds to PMINT with an acknowledg-
ment after the operation is completed.

3.3.2 Power Management Regions

McNoC is organized into power management regions, which can be modified at run-
time by setting the PortType configuration option. Every bi-directional port of every
node in the network can be configured to be of two different types, type N or type S.
S indicates that the neighboring node belongs to the same region, while N indicates
that the neighboring node belongs to a different region. An example configuration
is shown in Fig. 3.11. The platform is organized into three different regions:

• The first includes switch nodes S (1,1), S (1,2), S (1,2), S (2,3), and resource
nodes R(1,1), R(1,2), R(1,2), R(2,3);

• The second includes switch nodes S (2,1), S (2,2), S (3,1), S (3,2), S (3,3) and
resource nodes R(2,1), R(2,2), R(3,2), R(3,3);

• The third includes the single resource node R(3,1).

www.manaraa.com

72 J.-M. Chabloz and A. Hemani

Fig. 3.11 A 3×3 platform
organized into three different
GRLS regions

N

N

N

N N

NN

N

S S S S

S

S

S

S

S

S

S

S
NSS

S S

S

S

S
S S

S
S S

N

S

S

S

S

S

S

S

S

S(1,1)

R(1,1)

S(1,2)

R(1,2)

S(1,3)

R(1,3)

S(2,3)

R(2,3)R(2,2)

S(2,2)S(2,1)

R(2,1)

S(3,1)

R(3,1)

S(3,2) S(3,3)

R(3,3)R(3,2)

The settings in the different nodes should be coherent: as an example, if the
west port of switch node S (2,3) is configured as a N port, the east port of switch
node S (2,2) must also be configured as a N port. Regions can take any shape, the
only constraint being that all nodes in a region must be contiguous. For maximum
flexibility, every node can be enclosed into its own power management region.
Region-wide power management commands can be issued to any among the nodes
in a region and the command is automatically propagated to all nodes that belong
to it.

3.3.3 Boot Sequence

Upon reset, McNoC automatically boots in a mesochronous configuration, i.e.
a configuration in which all nodes run at the same frequency. Specifically, all
CGUs set f = fg0 and all VCUs set V = Vg0. Also, all GRLS Transmitters and

www.manaraa.com

3 Power Management Architecture in McNoC 73

Receivers are set for mesochronous communication. This solution guarantees that
the system achieves immediate synchronization and that the network becomes
immediately operational, which provides the basic infrastructure necessary for
PMINT to configure the Power Management Units.

Different configuration options need to be set before any power management
command can be issued:

• The network needs to be correctly configured in power management regions, by
setting the PortType configuration option in every node.

• The options gclkdiv[0] to gclkdiv[Nclk− 1], where Nclk is the number of global
clocks, must also be set to indicate the ratio between fH and the frequencies of
all the global clocks. If, for example, the first global clock runs at 200 MHz and
the second global clock runs at 300 MHz, then fH = lcm(200MHz,300MHz) =
600 MHz, gclkdiv[0] should be set to 3 and gclkdiv[1] should be set to 2. The
values of gclkdiv are expressed on 4 bits, and can take all values between 1 and
15 (the value 0 is illegal).

• Denoting as Nvdd the number of global supply voltages, the options Vdiv[0]
to Vdiv[Nvdd − 1] must also be set to indicate the minimal ratio fH

f that can be
supported by the global supply voltages. It is assumed that Vg0 >Vg1 >Vg2 >Vg3.
Vdiv[3] expresses, on 8 bits, the minimal clock division ratio fH

f that is supported

by voltage Vg3. If the ratio fH
f is lower than Vdiv[3], then Vg3 is too low to support

operation of the node at frequency f . Vdiv[2], Vdiv[1] and Vdiv[0] have a similar
definition. Because the voltage levels are ordered, it must be Vdiv[3]>Vdiv[2]>
Vdiv[1]>Vdiv[0].

• RT should be set, for all nodes, as the slowest round-trip to a neighboring node
expressed in terms of clock cycles. It is the responsibility of PMINT, who knows
the ratio between the clocks of all nodes, to calculate a value for RT .

• CWait must be set to a time interval, in terms of clock cycles, necessary for all
packets in the region to reach their destinations or exit the region when the region
is isolated and no packet enters it. Again, it is the responsibility of PMINT to set
the value of CWait according to the size and characteristics of the region.

Once all these steps have been concluded, the system is fully-configured and can
accept power management commands from PMINT.

3.3.4 DVFSCHANGE Command: Changing the DVFS Point

3.3.4.1 Interface

A DVFSCHANGE command has the following structure:

DVFSCHANGE(SEL,GDIV)

www.manaraa.com

74 J.-M. Chabloz and A. Hemani

The parameters are the following:

• SEL (2 bits): Id of the global clock to select
• GDIV (4 bits): Clock divider ratio

PMINT sends the DVFSCHANGE command to any node in the region for which
it wants to change the DVFS point. The command takes several cycles to execute.
Upon completion an acknowledgment is sent back to PMINT from the node that
received the request. Upon completion, the clocks of all nodes in the region will be
obtained by dividing the frequency of clock clkgSEL by the dividing factor GDIV :

f =
fgSEL
GDIV . The voltage of all the nodes in the region will be set to the lowest Vgi

which can support operation at frequency f , according to the Vdiv[i] configuration
options. All nodes in the region will communicate mesochronously. The GRLS
Receivers and Transmitters in the nodes neighboring the region that changed its
DVFS point will also be programmed so that they can continue to communicate
with the region once its DVFS point has changed. No packet will be lost while the
DVFS point is changed.

3.3.4.2 Internals

Once a DVFSCHANGE command is received by a Power Management Unit in a
node, the node immediately stops to send data items to all neighbors by disabling
output in all GRLS Transmitters.

The node also informs all neighbors about the change in DVFS point by sending
a DVFSCHANGE-N command to all neighbors. The node then waits RT cycles.
After RT cycles, all neighbors will have received the DVFSCHANGE-N command
and will also have stopped to send data items to the node. Then, the node calculates
the new ratio fH

f = gclkdiv[SEL]∗GDIV based on the selected global clock and the

clock dividing ratio. Based on fH
f and the values of Vdiv, the lowest global supply

voltage VgL that can tolerate operation at frequency f is determined. Commands are
issued to the CGU to change the global selected clock and the dividing ratio, and to
the VCU to change the voltage to V = VgL. The GRLS Transmitters and Receivers
are informed of the change in frequency. Then, the unit waits again RT cycles before
restarting to send packets to all neighbors and sends an acknowledgment back to
PMINT to inform it about the successful completion of the operation.

Nodes receiving a DVFSCHANGE-N command from another node residing in
the same power management region propagate a DVFSCHANGE-N command to all
neighboring nodes and then initiate a similar course of action, with the difference
that no acknowledgment is sent to PMINT. If the command is received from a node
that resides in a different power management region, then the node stops sending
packets to the node from which it received the command; it then updates its GRLS
Transmitter and Receiver based on the new frequency of its neighbor; finally, it waits
2RT cycles before restarting to send data to the neighboring node, which by then
will have changed its DVFS point.

www.manaraa.com

3 Power Management Architecture in McNoC 75

3.3.5 POWERDOWN Command: Power Down Modes

3.3.5.1 Interface

The POWERDOWN command has the following structure:

POWERDOWN(MODE)

The parameters are the following:

• MODE (2 bits): Power-down mode identifier (0: clock gating; 1: hibernation;
2: shutdown)

When a POWERDOWN command is received by a Power Management Unit, the
PMU sends immediately an acknowledgment back to PMINT. The command takes
several cycles to execute. Upon completion of the operation, all nodes in the GRLS
region will be powered down, i.e. they will have a gated clock; the supply voltage in
the node will remain unchanged (with MODE = 0), set to the lowest global supply
voltage (with MODE = 1), or disconnected from the global power supply (with
MODE = 2). PMU, GRLS Transmitters and Receivers and switch/resource will be
powered down, the only elements remaining active being the ALOIN, the CGU and
the VCU. All the packets that were moving inside the region when the command
was first received will have been consumed by the resources or evacuated from the
region. The switches neighboring the powered-down region will consider the ports
going to the powered-down region as border ports, i.e. they will feed the output port
on the input port.

3.3.5.2 Internals

Once a POWERDOWN command is received by a Power Management Unit in
a node, the node immediately sends an acknowledgment back to PMINT. It then
sends a POWERDOWN-N command to all neighboring nodes. Nodes receiving a
POWERDOWN-N command from a node in the same power management region
propagate the POWERDOWN-N command to all neighbors. Nodes receiving a
POWERDOWN-N command from a node in a different region stop sending data
items to the region that is going to be powered down. The region which is going to
be powered down remains thus isolated from the rest of the network. If the network
was configured correctly, in CWait cycles all packets traveling in the region will
have been consumed or will have left it.

After Cwait cycles, the node that received the POWERDOWN command sends a
POWERDOWN-S command to all neighboring nodes. Again, the POWERDOWN-
S command is propagated from node to node until it reaches all nodes in the region
and all nodes neighboring it. If a node receives a POWERDOWN-S command from

www.manaraa.com

76 J.-M. Chabloz and A. Hemani

S S S

R

R

R

R

S

S

SS

S

R

R

S

RR

S

S

R

S

R

R

S

S

R

S

R

R

S

S

R

R

S

S

RR

S

R

S

S

R

S

RR

S

S

R

S

R

S

R

RR

S

R

Fig. 3.12 Incorrect partitioning of the network in powered-down and awake regions

a node belonging to a different region, then the node closes the loop on that port,
i.e. it feeds the output port to the corresponding input port and resumes data output
on the port.

The original node that received the POWERDOWN command and all the nodes
that received the POWERDOWN-S command from a node in the same region gate
the clock and then fix the voltage to the level determined by MODE. The ALOIN,
which also contains all the configuration options of the PMU, remains operative.

3.3.6 Operation with Regions Powered Down

Powering down a region may divide the platform into multiple regions of contiguous
non-powered-down nodes, called awake regions. Communication between different
awake regions is not possible. As long as only resources are powered down, a single
awake region exists. If switches are also powered down, then the network structure
of the platform is disrupted. The Nostrum switches, based on X-Y routing, require
that all awake regions remain rectangular in shape.

For this reason, when powering down switch nodes, it is necessary for PMINT to
follow some guidelines to ensure correct operation. In particular:

• All resource nodes can be powered down without restrictions.
• Switch nodes can be powered down as long as the awake regions remain

rectangular in shape and all nodes in any region communicate only with nodes
within the awake region in which they belong.

As an example, Fig. 3.12 shows an incorrect configuration of the network. A non-
rectangular awake region is present, and the two crossed-out nodes cannot contact
or be contacted by any other resource node.

www.manaraa.com

3 Power Management Architecture in McNoC 77

Fig. 3.13 Loop-closing on
the border of a powered-down
region

Switch

Switch Switch

Switch

Powered−down
region

To avoid the loss of misrouted packets, McNoC closes the outgoing links going
to a powered-down region on the node itself, as is done with nodes on the border of
a network (see Fig. 3.13).

3.3.7 WAKEUP: Waking Up From a Power-Down State

3.3.7.1 Interface

The WAKEUP command is distinguished from the other commands because it is
not sent to a node inside the region that is woken up, but instead to a node that
neighbors it.

The WAKEUP command has the following structure:

WAKEUP(PORT)

The parameters are the following:

• PORT (5 bits): Id of the port on which the WAKEUP command should be
implemented

When a WAKEUP command is received by a Power Management Unit, the
PMU instructs the ALOIN, the Always-on-LOgic In Node, to wake up the region
neighboring it on the port indicated by PORT: for a switch node, PORT = 10000
indicates the resource port, PORT = 01000 indicates the north port, PORT = 00100
indicates the east port, PORT = 00010 indicates the south port and PORT = 00001
indicates the west port; all other values are illegal. For a resource node, PORT =
10000 indicates the switch port and all other values are illegal. The command takes
several cycles to execute. Upon completion, all nodes in the region that neighbors
the node on the specified port are restored to awake state, i.e. the clocks are restored

www.manaraa.com

78 J.-M. Chabloz and A. Hemani

to the frequencies that they had before the region was powered down and the supply
voltages are restored to the values they had before the region was powered down.
Communication from the neighboring nodes to the region, which was interrupted
when the region was powered down, is re-allowed. An acknowledgment is sent back
to PMINT.

3.3.7.2 Internals

When a region is powered down, the ALOINs of all nodes in the region are sent to
sleep. An ALOIN in a sleep state sets all its outputs to zero. When an awake ALOIN
sees an input port going to zero, it sets the corresponding output port to zero. RT
cycles after an ALOIN went to sleep, it is ready to be woken up. The ALOIN is
woken up when it sees one of its input ports going to one. When an ALOIN wakes
up, it sets all its output ports to one, so that the wakeup command is propagated
throughout the region. It also wakes up the CGU and the VCU. The PMU is woken
up and sends a WAKINGUP command to all neighboring nodes. Nodes receiving
a WAKINGUP command from nodes in a different region restart communication
with the region that was powered down.

3.4 Conclusion

In conclusion, the power management architecture of McNoC enables hierarchical
physical design by relying on rationally-related frequencies, thus avoiding the
overhead associated with handshake. Quantized voltage scaling is realized by
distributing multiple Vdd throughout the chip and allowing every node to select one
of the Vdds as supply voltage. Arbitrary power management regions can be defined
at configuration time or at run time. region-wide DVFS point change, power down
and wakeup services are provided.

References

1. International Technology Roadmap for Semiconductors Report, 2009
2. J. M. Rabaey, “Digital Integrated Circuits: A Design Perspective,” Prentice Hall, 1995
3. A. P. Niranjan and P. Wiscombe, “Islands of synchronicity, a design methodology for SoC

design,” Design, Automation and Test in Europe Conference and Exhibition, 2004
4. S. Herbert and D. Marculescu, “Analysis of Dynamic Voltage/Frequency Scaling in Chip-

Multiprocessors,” ISLPED 2007
5. P. Teehan et al., “A Survey and Taxonomy of GALS Design Styles,” Design & Test of

Computers, IEEE , vol.24, no.5, pp.418-428, Sept.-Oct. 2007
6. Nostrum home page - http://www.ict.kth.se/nostrum

www.manaraa.com

3 Power Management Architecture in McNoC 79

7. E. Nilsson, “Design and implementation of a hot-potato switch in a network on chip,” Master’s
thesis, Department of Microelectronics and Information Technology, KTH, 2002

8. A. Hemani et al., “Lowering power consumption in clock by using globally asynchronous
locally synchronous design style,” Design Automation Conference, 1999

9. I. E. Sutherland and J. Ebergen, “Computers Without Clocks,” Scientific American, Aug. 2002
10. S. Borkar, “Does asynchronous logic design really have a future?,” EE Times, 2003
11. D. M. Chapiro, “Globally Asynchronous Locally-Synchronous Systems,” PhD thesis, Stanford

University, Oct. 1984
12. K. Y. Yun and R. P. Donohue, “Pausible clocking: a first step toward heterogeneous systems,”

IEEE International Conference on Computer Design: VLSI in Computers and Processors, 1996
13. J. Muttersbach et al., “Practical design of globally-asynchronous locally-synchronous sys-

tems,” International Symposium on Advanced Research in Asynchronous Circuits and
Systems, 2000

14. J. M. Chabloz and A. Hemani, “A Flexible Interface for Rationally-Related Frequencies,”
ICCD 2009

15. J. M. Chabloz and A. Hemani, “Distributed DVFS with Rationally-Related Frequencies and
Quantized Voltage Levels,” ISLPED 2010

16. L. H. Chandrasena et al., “An Energy Efficient Rate Selection Algorithm for Voltage Quantized
Dynamic Voltage Scaling,” ISSS 2001

17. M. Putic et al., “Panoptic DVS: A Fine-Grained Dynamic Voltage Scaling Framework for
Energy Scalable CMOS Design,” ICCD 2009

18. E. Beigne et al. “Dynamic Voltage and Frequency Scaling Architecture for Units Integration
within a GALS NoC,” NOCS 2008

19. Cadence SoC Encounter User Guide
20. V. Gutnik and A. Chandrakasan, “Embedded power supply for low-power DSP,” in IEEE

Transactions on VLSI Systems, 1997
21. J. M. Chabloz and A. Hemani, “Lowering the Latency of Interfaces for Rationally-Related

Frequencies,” ICCD 2010
22. I. Miro Panades et al., “Physical Implementation of the DSPIN Network-on-Chip in the FAUST

Architecture,” NoCS 2008
23. D. Kim et al., “Asynchronous FIFO Interfaces for GALS On-Chip Switched Networks,”

International SoC Design Conference, 2005
24. G. Liang and A. Jantsch, “Adaptive Power Management for the On-Chip Communication

Network,” Digital System Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th
EUROMICRO Conference on

25. S. R. Vangal et al., “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS,” IEEE
Journal of Solid-State Circuits, vol.43, no.1, Jan. 2008

26. T. Sakurai and A. R. Newton, “Alpha-Power Law MOSFET Model and its Applications to
CMOS Inverter Delay and Other Formulas,” IEEE J. of solid-state circuits, 1990

27. A. Chakraborty and M. R. Greenstreet, “Efficient self-timed interfaces for crossing clock
domains,” International Symposium on Asynchronous Systems and Circuits, 2003

28. J. Mekie et al., “Interface Design for Rationally Clocked GALS Systems,” International
Symposium on Asynchronous Systems and Circuits, 2006

29. L. F. G. Sarmenta, “Synchronous Communication Techniques for Rationally Clocked Sys-
tems,” Master’s thesis, MIT, 1995

30. J. Carlsson et al., “A Clock Gating Circuit for Globally Asynchronous Locally Synchronous
Systems,” Norchip Conference, 2006

31. E. Amini et al., “Globally asynchronous locally synchronous wrapper circuit based on clock
gating,” Symposium on Emerging VLSI Technologies and Architectures, 2006

32. M. R. Greenstreet, “Implementing a STARI chip,” International Conference on Computer
Design, 1995

33. F. Mu and C. Svensson, “Self-tested self-synchronization circuit for mesochronous clocking,”
IEEE Transactions on Analog and Digital Signal Processing, vol.48, no.2, pp.129-140, Feb.
2001

www.manaraa.com

80 J.-M. Chabloz and A. Hemani

34. D. Mangano et al., “Skew Insensitive Physical Links for Network on Chip,” 1st International
Conference on Nano-Networks and Workshops, Sep. 2006

35. I. Loi et al., “Developing Mesochronous Synchronizers to Enable 3D NoCs,” DATE, 2008
36. C. E. Cummings and P. Alfke, “Simulation and Synthesis Techniques for Asynchronous FIFO

Design with Asynchronous Pointer Comparisons,” Synopsys Users Group Conference, 2002
37. N. Wingen, “What If You Could Design Tomorrow’s System Today?,” Design, Automation &

Test in Europe Conference & Exhibition, 2007
38. R. Ginosar, “Fourteen ways to fool your synchronizer,” International Symposium on Asyn-

chronous Systems and Circuits, 2003

www.manaraa.com

Chapter 4
ASIP Exploration and Design

Jari Kreku, Kari Tiensyrjä, Andreas Wieferink, and Bart Vanthournout

Abstract ASIP exploration uses the mappability method for the selection of
processor core and algorithm combinations for multi-core designs. The mappability
estimation is based on the analysis of the correlations of algorithm and core
characteristics. This information is used for narrowing the exploration space of
the subsequent ASIP design that exploits commercial ASIP design environment,
Synopsys Processor Designer. According to simulation results the proposed ASIPs
are able to achieve up to 96% of maximum performance with a clear reduction in
complexity.

4.1 Introduction

The requirements of embedded processors vary a lot depending on the targeted
application. Therefore specialised processors for particular application domains
have been developed. In addition to specific functional requirements they can be
designed for fulfilling various non-functional requirements like performance, power
and cost. Due to the well-defined and limited scope of embedded systems, designing
an optimised processor (ASIP) can reduce production costs and increase flexibility
and efficiency.

J. Kreku • K. Tiensyrjä (�)
VTT Technical Research Centre of Finland, Kaitoväylä 1 FI-90570 Oulu, Finland
e-mail: jari.kreku@vtt.fi; kari.tiensyrja@vtt.fi

A. Wieferink
Synopsys, Team4 Building, Kaiserstrasse 100 D-52134 Herzogenrath, Germany
e-mail: andreasw@synopsys.com

B. Vanthournout
Synopsys, Interleuvenlaan 15A B-3001 Leuven, Belgium
e-mail: bartv@synopsys.com

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 4,
© Springer Science+Business Media, LLC 2012

81

jari.kreku@vtt.fi;
kari.tiensyrja@vtt.fi
andreasw@synopsys.com
bartv@synopsys.com

www.manaraa.com

82 J. Kreku et al.

The development of ASIPs is a complex task that requires profound knowledge
of both the application at hand and the design of processor architectures. This often
leads to an iterative design process to find an optimal ASIP configuration to a set
of representative application algorithms. Typically a set of design alternatives are
evaluated to obtain relevant performance, power etc. data.

The typical alternatives for evaluating the mapping of an algorithm to an archi-
tecture have been static estimation, cosimulation or execution. Chen et al. [1] have
examined retargetable static timing analysis techniques of embedded software. Soft-
ware performance estimation techniques in [3, 12] try to approximate the amount
of required computation and the resulting minimum execution time. Lazarescu
et al. [7] uses the number of instructions derived from source code as a basis for
SW estimation. In [6] a method for evaluation performance using benchmark sets
and performance vectors is presented. Retargetable estimation scheme by [2] uses
parameterised architecture models for studying compiler-independent architecture
potential. In [9] neural networks and cycle-accurate training simulations are used
to estimate performance. Marcon et al. [8] considers mapping of applications to
homogeneous NoCs from the communication point of view.

In ASIP exploration, depicted in Fig. 4.1, the algorithms allocated to each
ASIP and the properties of that ASIP are extensively cross-studied in order to
define architectural parameters for the ASIP so that the execution efficiency of the
algorithms on the ASIP is maximised. The key factors affecting the efficiency of an
algorithm–processor architecture mapping are performance and resource utilisation.
The processor has to be able to execute the required computation quickly enough to
meet the timing requirements. On the other hand, the mapping is unsuccessful if the
algorithms or programs can not exploit the provided resources efficiently, leading to
increased cost and power consumption.

Core and Algorithm Mappability Analysis Approach (CAMALA) is a method
for calculating the mappability estimate of a processor architecture and algorithm
pair ([5,10,11]). Mappability denotes the degree of matching between the resources
provided by the processor core and requirements described by the algorithm.
Mappability estimation can be used for the evaluation or selection of existing
processor cores for the execution of an algorithm (and vice versa), or identification
of “optimal” architecture to be implemented as a custom processor. It does not
require that the implementations of the algorithm or processor exist.

The mappability estimation approach tries to alleviate the processor or algorithm
selection problem by taking into account both aspects of efficiency. Instead of
predicting the performance in clock cycles, it tries to indicate when the number of
resources is right so that utilisation is maximised and adding more resources would
not improve the performance.

Early evaluation of the efficiency of the algorithm-processor mapping requires
that the algorithm and processor models are straightforward to create directly from
the specifications. Moreover, the evaluation approach should not require execution
or simulation of execution.

With mappability estimation it is possible to evaluate which ASIP out of several
will be the most suitable for the execution of the algorithm or application, with

www.manaraa.com

4 ASIP Exploration and Design 83

Source code Core parameters

ASIP exploration

ASIP definition

ASIP design

ASIP model (ISS,
Compiler)

Fig. 4.1 MOSART design flow at the ASIP exploration level

respect to the properties of the processor core. The properties include super-
pipelining degree, number of execution units and number of registers, for example.
Besides the calculation of the mappability estimate for a set of processor–algorithm
pairs, the approach can be used to estimate the optimal values for the processor core
properties. It can also reveal, which intermediate language operations are used in
the algorithm and how often, which is beneficial for designing the instruction set
extensions for the ASIP.

The information of the processor properties and instruction set is provided to the
designer, who can take it into account in ASIP design with the Synopsys Processor
Designer. The possibilities for transferring this information from CAMALA to
Synopsys Processor Designer are considered in Sect. 4.2.3.1. The ASIP exploration
can be done iteratively so that the changes implemented with the Processor Designer
are optionally fed back to mappability estimation or system level exploration for a
new round of evaluations.

www.manaraa.com

84 J. Kreku et al.

Mappability

Architecture-algorithm pair

Optimal
mapping

Additional
capacity
notused

Architecture
constrained
performance

Fig. 4.2 Mappability function

4.2 Mappability Estimation

The figure of merit proposed for architecture-algorithm pair is mappability, e.g.
M=(c,a), where c is core architecture and a is algorithm. Mappability is optimal
when the hardware architecture does not constrain the execution and it does not have
any unused capacity, as depicted in Fig. 4.2. In an ideal case all the hardware in the
core is participating in the execution of code all the time, but additional resources
cannot be used because of the nature of the code.

Instruction capability, instruction execution speed and dynamic parallelism are
core characteristics that affect performance. Instruction capability depends on
instruction set, internal registers and memory interface. Execution speed depends
on superpipelining degree, pipelining support and instruction types. Dynamic
parallelism depends on execution architecture and the core’s capability to utilize
the potential in the algorithm’s control flow.

The computation constraints from the algorithm are caused by its control flow
structure and data dependencies. The control flow determines the executed program
paths. It depends on input data or events. Data dependencies constrain the order and
the amount of parallelism in which the operations can be executed.

CAMALA extracts essential characteristics of the core and algorithm and
analyses how much correlation exists between the algorithm’s computation re-
quirements, e.g. data dependencies and control flow structure, and core properties,
e.g. instruction set, execution architecture and memory interface. The algorithm
characterization is based on compilation, profiling and bound checking. The result
is an intermediate representation graph. The core model consists of the instruction
models described using weighted data dependency graphs, and interface and
architecture parameters.

The algorithm a can be modeled as a control flow graph A = (V,G), where nodes
v j ∈ V are basic blocks (BB) and arcs g j ∈ G are branches. Each BB v j has an
execution weight wj and its operation can be modeled as a data dependency graph
Wj =(O j,Uj). In W the nodes ok ∈O j are primitive operations of target independent
representation and arcs uk ∈ Uj are data dependencies. Each arc uk has a label
describing its data type dtk. Each arc g j ∈ G has a branching probability Pj.

www.manaraa.com

4 ASIP Exploration and Design 85

Table 4.1 Parameters of the
processor core model

Execution architecture parameter Value range

Branch prediction technique PT none, static or dynamic

Dynamic prediction efficiency Pe 0–100%

Pipeline depth Dp 1−N

Superpipelining degree Ds 1−N

Number of execution paths E 1−N

Number of registers R 1−N

Data buses BD 0−N

Program bus BP yes or no

Combined data/program buses BC 0−N

Bus width Bw 1−N

Floating point cost factor Cf 1−N

Word length cost factor Cw 1−N

The core c consists of instructions i j ∈ I and execution architecture parameters
(Table 4.1). Each instruction i j is able to replace one or more operations ok and has
an execution and implementation cost Cex,j and Cim,j. If the core is not capable of
implementing every primitive operation in O, then virtual instructions are added to
I to model the required subroutines.

Correlation is calculated by obtaining the number of a core resources ec of type
R from the processor model and estimating the algorithms need for such resources
ea from the algorithm model. The difference between the available resources and
resource requirements is calculated for each basic block at a time and the weighted
standard deviation formula is used to generalise the results for the entire algorithm.
Here, ec acts as the mean value and ea of each basic block as the sample value. The
CAMALA tool uses the rapid standard deviation calculation method to calculate
correlation iteratively one basic block at a time:

First the running sum Ωi of basic block weights wi is calculated:

Ω0 = 0 (4.1)

Ωi = Ωi−1 +wi (4.2)

The ordering of the basic blocks is not significant. Next the running sums of mean
Ai and squared difference Qi are calculated:

A0 = 0 (4.3)

Ai = Ai−1 +
wi

Ωi
(ea,i −Ai−1) (4.4)

Q0 = 0 (4.5)

Qi = Qi−1 +wi(ea,i − ec)
2 (4.6)

www.manaraa.com

86 J. Kreku et al.

where ea,i is the algorithm’s resource need in basic block i. Correlation after n basic
blocks (deviation of basic blocks’ optimal resource requirements from the number
of resources in the core) is then

c = c f n(wi,ea,i,ec) =

√
Qn

Ωn
(4.7)

and the value for the core property, which would produce optimal correlation

ea,opt = An (4.8)

Good mappability between an algorithm and a processor core requires that the
instruction set is suitable for the required computation, the execution architecture
supports the logical and effective ordering of operations and the data is available
when needed. In order to manage the complexity of estimation, we have divided
the correlation problem into seven orthogonal parts (Sect. 4.2.1). Experiments with
a large set of algorithms and cores indicate that the correlation values have a
log normal distribution. The overall mappability is calculated as a sum of the
correlations:

M =∑e
lnci−μi

σi (4.9)

where μi and σi are the mean and standard deviation of correlation i’s natural
logarithm respectively.

4.2.1 Correlations

The calculation of the mappability estimate for an algorithm-processor pair has
been divided into seven independent parts, which evaluate the problem from
different points of view. The points of view include the relationship between
algorithm’s operations and processor’s instruction set, exploitation of parallelism in
the algorithm with pipelining and execution units, control flow, and data availability.

4.2.1.1 Instruction Set Effectiveness Correlation

The instruction set effectiveness (ISE) correlation depends on how effectively the
core’s instruction set can be used for the given algorithm from the performance point
of view. In the algorithm model the graphs Wj = (O j,Uj) will be replaced with the
graphs W

′
j = (O

′′
jU

′
j) by replacing the primitive operations o ∈ O j with implemented

instructions i∈ I j. The procedure is basically similar to what happens in a compiler’s
back-end. The data types and available accuracy needs to be checked. If they do not
match, the cost of instructions are multiplied with floating point cost factor Cf or
word length cost factor Cw, respectively.

www.manaraa.com

4 ASIP Exploration and Design 87

Unlike the other correlations, ISE correlation is calculated for the entire algorithm
at a time. First, the reference cost C0 of the algorithm is calculated by assuming that
each operation in the algorithm will be performed in one clock cycle:

C0 = Otot (4.10)

where Otot is the total number of operations in the algorithm. Next, the operations
are replaced with the core’s instructions and the cost with core’s instructions CI is
calculated. The ISE correlation is then calculated using the following formula:

cISE = ln
100CI

C0
(4.11)

4.2.1.2 Instruction Set Coverage Correlation

The instruction set coverage (ISC) correlation analyses, how extensively the proces-
sor core’s instruction set can be used for the execution of the algorithm. Instruction
set coverage correlation is performed after instruction set effectiveness correlation
and thus it uses the modified algorithm model, where target-independent operations
have been replaced with core’s instructions. First, the relative implementation Ir,i

cost of each non-virtual instruction i is calculated:

Ir,i =
Ii

Itot
(4.12)

where Ii is the implementation cost of instruction i given in the core model and Itot

is the sum of the costs of all instructions. Next, the probability Pi of the instruction,
i.e. how commonly the instruction has been used in the modified algorithm model,
is calculated:

Pi =
Ni

Ntot
(4.13)

where Ni is the number of times instruction i has been used and Ntot is the total
number of instructions.

ISC correlation considers that instructions with large implementation cost must
be used more often than the others to justify their existence in the processor core.
Thus, using the correlation calculation method given in Sect. 5.1 iteratively for each
instruction we get

cISC = c f n(1, Ir,i,Pi) (4.14)

which gives the optimal correlation when each instruction’s probability equals its
relative implementation cost.

www.manaraa.com

88 J. Kreku et al.

4.2.1.3 Internal Data Availability Correlation

The internal data availability (IDA) correlation expresses how effectively registers
can be used. In program execution the registers store intermediate results and
frequently-used operands. Knowing how many registers can be used requires that
we know the number of intermediate results r(a) during algorithm execution. In the
algorithm model the intermediate results are the arcs v in data dependency graphs W ,
so for each node we calculate the maximum number of arcs between two scheduling
step using ASAP and ALAP schedules, so e(a) ∼ max |Ui|. Because the schedules
are not constrained by resources, they express the extent to which parallelism and
registers can be exploited.

The nodes belonging to a loop must be combined to one node for this correlation.
The external dependencies inside the loop are considered internal dependencies and
the new node weight is the smallest weight of the nodes belonging to the loop. The
correlation for one node and number of registers can be calculated iteratively using
the correlation function, where e(c)∼R is the number of registers in the core model:

cIDA = c f n(Wi,max |Ui|,R) (4.15)

4.2.1.4 External Data Availability Correlation

The external data availability (EDA) correlation deals with bus efficiency. The bus
usage should correlate to the bus capacity. The number of instruction bus operations
is assumed to be equal to the number of executed instructions, ii. The number
of data operations is estimated using external dependencies in w and operations
without successors. It is assumed that external dependencies outside a loop require
bus operations because the program flow is non-deterministic. The results of the
operations without successors must be written into memory because the whole
operations are useless otherwise. The estimated algorithm characteristic is then the
bus usage, e.g. e(a) ∼ ii + ir + iw. The estimated processor characteristic is the bus
capacity, e.g. e(c)∼ B, which depends on the number of buses and bus width in bits.

For the Von Neumann architecture the EDA correlation is defined as follows:

cEDA = c f n(Wi, ii + ir + iw,Bi) (4.16)

where Bi is the capacity of the combined instruction and data bus. For the Harvard
architecture instruction and data buses are handled separately:

cEDA = c f n(Wi, ii,Bi)+ c f n(Wi, ir + iw,Bd) (4.17)

where Bi and Bd are the capacities of the instruction and data buses respectively.

www.manaraa.com

4 ASIP Exploration and Design 89

4.2.1.5 Control Flow Continuity Correlation

The control flow continuity (CFC) correlation depends on the number of branch
instructions and pipeline depth. The branch instruction ratio B is calculated by
dividing the number of branch instructions |ib| by the number of all instructions
|I j| in a program path:

B =
|ib|
|I j| (4.18)

Branch prediction reduces the number of executed branch instructions and branch
penalties. If static branch prediction is used, it is assumed that the compiler can
optimize all branches correctly and, if dynamic prediction is used, the value must
be given as a parameter Pe. Effective branch instruction ratio Beff is calculated by
subtracting the correctly predicted branches from B, thus:

Beff = (1−Pe)B (4.19)

The core characteristic in estimation is the pipeline depth, e(c)∼ D.
The best mappability value is achieved when there is a long pipeline and few

branches, because the execution of instructions can be overlapped effectively. If
there is a short pipeline and a lot of branches, the branch penalties are small. If
there is a short pipeline and few branches, we do not exploit all the overlapping
possibilities of the algorithm, and if there is a long pipeline and lot of branches, the
overlapping benefits are wasted because of branch penalties.

The CFC correlation analyses the entire algorithm at a time like the ISE
correlation. The CFC correlation begins with the estimation of the optimal pipeline
depth Dopt for the algorithm. Assuming no prediction is used this is given by

Dopt,no−pred =
1

kB
− 1 (4.20)

and with static or dynamic prediction

Dopt,pred =
1

kBeff
− 1 (4.21)

where k is a scaling factor (default k = 9).
If the core supports branch prediction, the CFC correlation is given by

cCFC = c f n(1,Dopt,no−pred,D) (4.22)

Otherwise the following formula is used:

cCFC = c f n(1,Dopt,no−pred,D)+ c f n(2,Dopt,pred ,D) (4.23)

to avoid situations, where the optimal correlation would always be given by pipeline
depth of 1 without branch prediction in the core.

www.manaraa.com

90 J. Kreku et al.

4.2.1.6 Data Flow Continuity Correlation

In the data flow continuity (DFC) correlation the idea is that if the execution order of
instructions is fixed by data dependencies, it will cause data hazards and degrade the
pipeline efficiency. The degree of data dependency can be estimated by analyzing
the number of instructions in a schedule step in unconstrained ASAP or ALAP
schedule of wj . The instructions that can be scheduled on the same step can fill
the pipeline without data hazards. The topology of w and bypassing support of the
processor has an effect on the mobility of instructions, d, and a higher mobility
makes it easier to exploit the pipeline more efficiently. The estimated algorithm
characteristic is then e(a) ∼ dīi, where īi is average number of instructions in a
scheduling step. The core characteristic is the superpipelining degree, e(c) ∼ Ds.
Thus,

cDFC = c f n(Wi,dīi,Ds) (4.24)

4.2.1.7 Execution Unit Availability Correlation

The execution unit availability (EUA) correlation compares operation level paral-
lelism in an algorithm to the number of parallel execution units. The parallelism of
algorithm is constrained by the data dependencies and it can be studied by dividing
the number of instructions in W by the number of steps in the shortest possible
schedule, so e(a) = ī j.

The parallelism of the architecture is constrained by the available execution units
in each parallel execution path. The parallel execution units in the core are, typically,
not alike and all the execution units cannot execute all the instructions. We estimate
the number of parallel execution units by calculating the coverage of execution unit
k by dividing the possible instruction/unit by all instructions/core and then adjusting
the number of execution paths E with this value, i.e. e(c) ∼ kE . The value of EUA
correlation is calculated iteratively using the following formula:

cEUA = c f n(Wi, ī j ,kE) (4.25)

4.2.2 Algorithm Modeling Front-End

The algorithm models can be written manually, but in complex cases it is rather
cumbersome. Therefore, a GNU Compiler Collection (GCC) 4.3.1 based front-end
has been developed to create models automatically from source code. It extends
GCC with an additional compilation pass pass camala (Fig. 4.3), which can be
enabled with a single compilation flag. Pass camala is located approximately in
the middle of all the passes, between pass dcc and pass update address taken
in the current implementation. At this phase, GCC is still using the high-level

www.manaraa.com

4 ASIP Exploration and Design 91

GCC
Front-end

GCC
Middle-end

…

pass_dce

pass_camala

pass_update_
address_taken

…

GCC
Back-end

Basic block
traversal

BB edge
traversal

Statement tree
traversal

DDG
generation

Source code
(C, C++, …)

Binary

CFG
generation

optim
isation passes

CAMALA
Algorithm model

Fig. 4.3 Block diagram of the CAMALA front-end implemented by extending GCC

GIMPLE intermediate language and generating the models there will not introduce
dependences on a particular target architecture. The front-end should be able to
generate workload models from any language supported by GCC. However, only C
has been tested in experiments.

CAMALA algorithm models contain weights for control flow nodes and prob-
abilities for branches. GCC can obtain these if code profiling is used. Thus, the
model generation flow includes the following three phases: (1) First the source
code is compiled with profiling, (2) then the compiled binary is executed with a
suitable dataset, and (3) finally, the source code is recompiled with profile-guided
optimisation and model generation enabled.

The pass camala extracts the control flow by traversing the BBs and BB edges in
the GCC’s intermediate representation and generates the control flow graph (CFG)
for the algorithm model accordingly (Fig. 4.3). The format for the generated nodes
is the following:

node_j {
weight = wj;
Successors (0 - N)
target = node_g1;
prob = P1;
...
DDG nodes
...

}

where node_j is a unique identifier for the CFG node. For each BB the generator
will extract the number of times the block has been executed from the profiling
data and use it as the node weight wj. It will also obtain the identifiers of successor
nodes node_g1, node_g2, ... by walking through the BB exit edges and the
probabilities of branching to those nodes P1, P2, ... from the profiling data.

www.manaraa.com

92 J. Kreku et al.

Table 4.2 CAMALA
operation set for data
dependence graphs

Class Operations

arithmetic x+ y, x− y, x · y, x/y, −x, |x|, min(x,y), max(x,y)

logical x∧ y, x∨ y, x⊕ y, ¬x

bitwise x∧ y, x∨ y, x⊕ y, ¬x

shift left or right shift or rotate x by y

comparison x < y, x ≤ y, x > y, x ≥ y, x = y, x = y

other branch, call, no-op

In addition, pass camala traverses all GIMPLE statements within each basic
block to generate a data dependence graph (DDG) of the contents of the block.
The nodes in the DDG represent intermediate language operations and have the
following format:

r_type r_precision op_id op_type(arguments);

where r_type and r_precision denote the result data type (int, float) and
precision (in bits) of the operation respectively. op_id is a unique identifier, which
is obtained with GCC’s DECL_NAME() macro whenever possible. Otherwise, a
unique temporary id is generated.op_type corresponds to the type of the operation
and is one of the types listed in Table 4.2. Within GCC the data and operation types
can be obtained by examining the tree expression with TREE_CODE() macro and
precision with TYPE_SIZE() macro.
arguments is a comma-separated list of the dependences of the node. Each

argument has the following format:

dep_type dep_precision dep_id

where dep_type and dep_precision are optional and denote the data type and
precision of the dependence. dep_id is the dependence identifier and must corre-
spond to the op_id of predecessor node. However, dep_type and dep_pre-
cision may override the result type and precision of the predecessor node. Call
operations have an additional argument for the name of the function.

4.2.3 CAMALA Tool

A command-line CAMALA tool has been implemented with C++ for mappability
estimation. It expects the algorithm model in its own textual format, which
resembles the C programming language to a degree. The properties of the processor
core are given in a text file, which describes the instructions supported by the core,
instruction parameters (e.g. latency), and core parameters (Table 4.1).

After the mappability estimation has been completed, CAMALA will present the
following information to the user:

www.manaraa.com

4 ASIP Exploration and Design 93

• Optimal values for processor core properties per each correlator, which are
estimated from the algorithm model. Depending on the correlator and verbosity
level, one or more intermediate values used in the calculation of the estimate can
be displayed.

• Processor core properties obtained from the core parameter file.
• Values for each correlation, which are obtained by comparing core properties

to the corresponding algorithm properties. A value of zero represents high
correlation (optimal match), whereas the higher the correlation value is the worse
is the match.

• Overall mappability estimate, which is a weighted average of the correlations.

4.2.3.1 Interface to Synopsys Processor Designer

CAMALA is also able to estimate the optimal selection of instructions for the
execution units of the processor core. First, the optimal number of parallel execution
units (i.e. VLIW slots) is obtained from the EUA correlation. Next, the ISA corre-
lation needs to be performed to analyse, how often each instruction implemented
in the core can be used for the execution of the algorithm. More commonly used
instructions are given more slots and vice versa.

Initial guess Ni of the number of slots for instruction i is given by

Ni = NoptIPi (4.26)

where Nopt is the optimal number of execution units, I is the number of instructions
in the core and Pi is the probability of instruction i:

Pi =
Ui

Uall
(4.27)

where Ui is the number of times instruction i can be used in the execution of the
algorithm and Uall is the total number of instructions required by the algorithm.
Thus the average number of slots given to instructions equals the optimal number of
execution units given by the EUA correlation.

Next, Ni is limited so that there is at least 1 slot for all instructions regardless
whether they are used by the algorithm or not. There is also an upper bound for the
number of slots, Nmax, which by default is 6:

Ni =

⎧
⎨

⎩

1 Ni < 1
Ni 1 ≤ Ni ≤ Nmax

Nmax Ni > Nmax

(4.28)

After limitation the number of slots allocated for instructions is adjusted by
increasing or decreasing them evenly. This is done in order to keep the average
at the optimal level, since limitation may decrease or increase the number of slots.
Difference from the optimal D is:

D = Navg −Nopt (4.29)

www.manaraa.com

94 J. Kreku et al.

where Navg is the average number of slots after limitation. Correction C is:

C =

{
DI

I−Iu
D > 0

DI
I−Io

D < 0
(4.30)

where Iu is the number of instructions below 1 slot and Io is number of instructions
above Nmax slots. Thus we get:

N̂i = Ni −C (4.31)

Finally, the number of slots is rounded to the nearest integer, which is still within
the limits.

There are two different methods for allocating the slots: simple and balanced.
In the simple allocation the first execution unit always contains all instructions, the
second execution unit contains instructions with at least two slots, and so on until
unit N contains instructions with N slots. In balanced allocation the instructions
are allocated to slots starting from the most common instruction. The least used
slot will be selected from the slots available to the instruction. The list of available
slots is limited by interdependences between instructions, e.g. instruction i0 may use
partially or completely the same hardware as instruction i1 and thus needs to use the
same slots.

4.3 Synopsys Processor Designer

4.3.1 The Commercial Tool: Processor Designer

Processor Designer is used to develop a wide range of processor architectures,
including architectures with DSP-specific and RISC-specific features as well as
SIMD and VLIW architectures. The design flow is depicted in Fig. 4.4. Processor
Designer’s generated software development environment enables the commence-
ment of application software development prior to silicon availability, thus eradicat-
ing a common bottleneck in embedded system development. The key to Processor
Designer’s automation is its Language for Instruction Set Architectures, LISA
2.0. In contrast to SystemC, which has been developed for efficient specification
of systems, LISA 2.0 is a processor description language that incorporates all
necessary processor-specific components such as register files, pipelines, pins,
memory and caches, and instructions. It enables the efficient creation of a single
golden processor specification as the source for the automatic generation of the
instruction set simulator (ISS) and the complete suite of software development
tools, like Assembler, Linker, Archiver and C-Compiler, and synthesizable RTL
code. The development tools, together with the extensive profiling capabilities
of the debugger, enable rapid analysis and exploration of the application-specific
processor’s instruction set architecture to determine the optimal instruction set

www.manaraa.com

4 ASIP Exploration and Design 95

Fig. 4.4 Synopsys processor design flow

for the target application domain. Processor Designer enables the designer to
optimize instruction set design, processor micro-architecture and memory sub-
systems, including caches.

4.3.2 The Extension: Processor Designer Starter Kit

The Processor Designer framework provides flexibility to develop highly optimized
ASIPs, respectively programmable accelerators. However, this flexibility comes at
the cost of high development effort, especially when the processors are developed
from scratch.

In order to ease this effort, a starter kit has been created, which contains a
set of fully functional processor architecture templates. The basic architecture
template only provides what is absolutely necessary to provide a fully working set
of software development tools including C-compiler and cycle accurate instruction
set simulator.

By compiling the target application for this basic processor architecture, the user
can immediately start with a functionally correct simulation. Profiling the applica-
tion already executing on the target architecture should then point the designer the
spots which are promising candidates for optimization.

www.manaraa.com

96 J. Kreku et al.

There are several independent approaches that can significantly increase perfor-
mance, which can of course be combined. The template kit contains examples for
these kinds of extensions:

• Instruction-set extensions: Fusion of multiple (simple) instructions into a highly
specialized complex instruction. Typically, additional functional units are allo-
cated to execute these instructions.

• Special purpose registers: Highly optimized functional units need to read and
write their data efficiently. Additional customized register banks can be allocated,
e.g. to hold 4 × 4 blocks of pixels for an H.264 video encoder.

• Data parallelism (SIMD): A huge set of data is processed in parallel by a vector
type functional unit. In an H.264 video encoder, an instruction could perform the
same operation on a block of 16 pixels simultaneously. This type of processing
is often called SIMD (Single Instruction Multiple Data).

• Instruction-level parallelism, software pipelining (VLIW): Subsequent opera-
tions should be executed in parallel wherever possible. For example, the next
burst of input data should already be loaded from memory while the current
burst is still computed. For embedded applications the parallel instructions are
typically scheduled by the compiler. This kind of architecture is also often
referred to as VLIW (Very Long Instruction Word).

• Pipelining: By pipelining processor instructions, the data-path of a functional
unit can be distributed over multiple pipeline stages. This breaks up the critical
path of the functional unit as it results in faster combinatorial logic.

4.3.3 Using CAMALA as Front-End

Even when simplifying the ASIP design by using the PD kit, there is still a huge
design space left which cannot be explored exhaustively. It makes sense to pre-
explore the ASIP design space on a higher abstraction level in order to detect
promising ASIP configurations that are worthwhile to focus on.

For some key ASIP parameters, even an automated transfer of CAMALA
configuration proposals into Processor Designer is possible. As already mentioned
in Sect. 4.2.3.1, the ASIP’s VLIW configuration is such a key property.

VLIW processor architectures are a powerful vehicle for meeting future per-
formance requirements. It is plausible that design space exploration concerning
the most optimal number and population of VLIW slots has a huge impact on
overall performance and chip area of a processor. The PD starter kit contains a
rich collection of VLIW processor templates. The following design options are
implemented independently from each other in different LISA model files:

• Number of VLIW slots (1 . . . 6)
• Variable length instruction encoding (yes / no)
• Synchronous Memory (yes / no)

www.manaraa.com

4 ASIP Exploration and Design 97

• Extra instructions (none, Multiply, MAC, ABS, SIMD-ABS,. . . , and combina-
tions of those)

• Exact population of available VLIW slots with instructions (many permutations
possible).

The final configuration option is the exact population of available VLIW slots
with instructions. All current template kit configurations are written such that they
just allocate all known computational instructions in all slots. This means that
chip area may increase significantly, because a maximum number of functional
units need to be instantiated on the chip. However, it is most likely not necessary
to allocate expensive units like a multiplier once for each VLIW slot. Thus, an
important design parameter is the VLIW slot configuration: Which instructions
should be available in which slot, and how many slots are required?

As indicated in Sect. 4.2, CAMALA is able to analyze the target application on
an abstract level, and it can estimate to which degree instruction level parallelism
is possible. From that, CAMALA then proposes promising configurations for
the VLIW slots. The idea is that these configuration proposals are automatically
imported by the Synopsys environment and further processed in order to select and
configure a LISA processor template.

The text file format that has been agreed on is looking like this (simplified):

d e f i n e VLIW MAX SLOTS 4
d e f i n e GROUP SLOT 0 a l u a r i t h m e t i c <0> | | a l u l o g i c <0> | | smul<0>
d e f i n e GROUP SLOT 1 a l u a r i t h m e t i c <1> | | a l u l o g i c <1> | | smul<1>
d e f i n e GROUP SLOT 2 a l u a r i t h m e t i c <2>
d e f i n e GROUP SLOT 3 a l u a r i t h m e t i c <3>

This example would allocate the basic arithmetic instructions in all 4 of the 4
requested VLIW slots, whereas the basic logic instructions as well as a multiply
instruction are only allocated in 2 of the 4 slots.

The syntax is already in the correct format as expected for LISA models to define
the coding root, which is the central instance that spans the operation tree. The file
contains preprocessor defines, because for a LISA template with variable length
coding, the same slot definitions may be required multiple times throughout the
LISA code.

Unfortunately, the traditional way of setting up the coding tree for a LISA model
does not match the way it is required for a CAMALA coupling. As depicted in
Fig. 4.5, it is usually the signature of the instruction encoding that is defined at
the top level of the operation tree. This way, instructions with the same operand
footprint share the same sub-branch. For example, the coding tree branch below
alu rri contains all instructions that operate on two register references and require
one immediate value. Only in lower nodes of the operation tree, the branches split
according to functional differences. The advantage of this approach is a higher
modelling efficiency especially for processor architectures having a very regular
instruction encoding. However, this approach is not suitable to optionally instantiate
instruction branches according to their functionality, as required for the CAMALA

www.manaraa.com

98 J. Kreku et al.

Fig. 4.5 “Traditional” organisation of a LISA model

Fig. 4.6 “Functional” organisation of a LISA model

coupling. In the traditional operation tree, it would only be possible to remove or
add instruction groups according to their encoding, which is not useful.

That is why all VLIW templates in the library need to be organized as an
operation structure shown in Fig. 4.6. Only in this way it is possible to optionally
remove entire sub-branches according to instruction functionality rather than their
encoding.

This VLIW slot configuration information can now be provided by CAMALA in
a few lines of text file.

www.manaraa.com

4 ASIP Exploration and Design 99

Table 4.3 Processor core
parameters

Value

Parameter PdKit-RISC PdKit-VLIW

Branch prediction none

Pipeline depth 5

Instruction and data buses 32-bit instruction & data bus

General purpose registers 16 32-bit registers

Execution units 1 4

Instruction set ALU arithmetic, ALU logic, compare,
shift, fused shift logic, fused shift
arithmetic, smul, abs, mac

4.4 Case Example

4.4.1 Algorithm and Core Models

MiBench ([4]) is a freely available benchmark suite which consists of several
applications in the fields of automotive control, networking, security, consumer
devices, office automation, and telecommunication.

The algorithm model generator was used to create models of several MiBench
benchmark applications: as a result, one model was obtained per each function
in each automotive benchmark. The larger option of the MiBench data sets was
selected for each application. Two processor core models were created manually
(Table 4.3): They model two variants of the PdKit ASIP template of the Synopsys
Processor Designer. The first one is a singe unit RISC, whereas the second one has
four parallel execution units in a VLIW configuration.

The applications were first compiled with profiling code. Next, they were
executed to obtain the branch probabilities and execution weights for the control
flow from the profiling data. Finally, the applications were recompiled with profile-
guided optimisation and model generation. As a result, one algorithm model was
created per each function in each automotive benchmark.

4.4.2 Mappability Estimation

Table 4.4 shows the overall mappability for all benchmarks. A value of zero
would indicate optimal correlation between the properties of the algorithm and the
processor core.

It seems that the higher data processing capacity of the VLIW is favourable in
only a few benchmarks: Rijndael, Rsynth, SHA, CRC32 and the encoding part
of GSM. However, when the mappability estimate of the RISC is better than that
of the VLIW, the difference is quite small. The only exception here is the Lame

www.manaraa.com

100 J. Kreku et al.

Table 4.4 Mappability estimates for MiBench benchmarks and PdKit cores

Mappability

Set Benchmark Algorithms PdKit-RISC PdKit-VLIW

Automotive Basicmath 3 3.41 3.65
Bitcount 8 4.10 4.31
Quicksort 2 17.28 17.55

Consumer Lame 211 7.59 12.39
Network Dijkstra 3 3.99 4.32
Office Ghostscript 3774 5.60 5.79

Rsynth 77 6.33 6.20
Security Rijndael 7 36.35 34.81

SHA 7 6.33 3.68
Telecomm CRC32 2 3.17 2.97

FFT 6 2.60 2.69
GSM encode 77 39.86 14.09
GSM decode 77 4.53 4.90

benchmark. On the other hand, the VLIW is clearly better in SHA and GSM
encoding.

Based on the estimates, neither of the cores is really suitable for the Quicksort,
Rijndael and GSM encoding benchmarks. Quicksort consists of mostly compar-
ison operations and thus the ISC correlation is high. The same applies to the
Gsm Long Term Predictor() function in GSM encoding. Furthermore, the function
Gsm RPE Encoding() has high IDA and EDA. The cores have too many registers and
not enough bus capacity for this algorithm. The ISC correlation is not bad, but a
smaller instruction set consisting of comparison, shift, multiplication and arithmetic
instructions would suffice. In the Rijndael benchmark the decrypt () function would
benefit from more registers and it could also utilise a longer pipeline.

The cores fare much better with Basicmath, Bitcount, Dijkstra, CRC32 and FFT.
Basicmath and Bitcount are rather simple benchmarks, which match the properties
of the PdKit cores well in all respects. The cores obtain low correlation values for
everything except the dijkstra () function in Dijkstra. The ISC correlation is higher
than the rest there due to the limited operation set consisting of mostly comparisons
and arithmetic. The CRC32 and FFT require a closer inspection: In FFT, most of
the execution time is spent in the C library functions sin () and cos () , but these
functions were not compiled during the compilation of the benchmark. Thus the
model generator did not generate models for them. In CRC32 the same happens with
getc () . As a result the mappability estimation for the two benchmarks is dominated
by their main() functions, which are not too complex and therefore suitable for the
PdKit cores. It would be possible to generate models of the sin () , cos () and getc ()

functions by compiling the C library source code. However, it was not done for this
case example.

The correctness of the mappability estimation approach was not measured in
this case, but the results are in-line with the expectations based on the nature of

www.manaraa.com

4 ASIP Exploration and Design 101

the algorithms and processor core properties. Earlier versions of correlators have
been compared to measurements from real implementations in [5, 11]. CAMALA
was able to detect the best matrix multiplication algorithm for two DSP cores and
effectively predicted the best variant of ARM architecture for several MiBench
benchmarks in those experiments.

4.4.3 VLIW Slot Configuration

The VLIW slot configuration with CAMALA was evaluated with simulations
using the Basicmath, Bitcount and Quicksort benchmarks. CAMALA was used to
propose two configurations for each benchmark: a normal and a 25% more parallel
alternative. The Processor Designer was used to create these ASIPs and, in addition,
several more generic variations of the PdKit template with 1 to 6 execution units.
Finally, the benchmarks were simulated with the ASIPs and the execution time was
measured.

The ASIPs and execution times of the benchmarks are shown in Table 4.5. The
ASIPs in the table are named Ni-full,alu,noalu where N is the total number of
parallel execution units and the prefix denotes, whether there are N slots for all
instructions (full), only for ALU instructions (alu), or only for non-ALU instructions
(noalu). The table presents the number of slots for the different instruction groups
for each ASIP core.

The execution time is displayed in millions of cycles for all the benchmarks. It is
likely that the maximum attainable clock frequency would vary between the ASIPs
and that the less complex variants could reach higher frequencies. However, the
clock frequencies were not considered in this comparison.

In addition, there is a simplified complexity estimate Ce, which is calculated as
follows:

Ce = S+ 5Sm (4.32)

where Sm is the number of slots for the multiplier and S is the number of slots for
other instruction groups.

The normal ASIP proposed by CAMALA for the Basicmath benchmark achieved
95% of the performance of the most complex ASIP with 6 units. On the other
hand it has only 22% of the complexity of that highest-performing ASIP. The
25% more parallel proposal achieved 96% of the performance with 37% of the
complexity. However, from the comparison ASIP set, the 2i-full is able to achieve
98% performance with 35% complexity.

In Bitcount, the normal CAMALA proposal is able to achieve a 95% level of
performance with 24% of the complexity. The 25% more parallel alternative reaches
99% and 31% respectively. This is clearly the best obtained performance for the
number of resources.

Finally, with Quicksort we are able to see that CAMALA has proposed adding
more compare units to the core since comparisons form the bulk of the benchmark.

www.manaraa.com

102 J. Kreku et al.

Table 4.5 Mappability estimates for MiBench benchmarks and PdKit cores

Execution units Execution time (M cycles)

Core
ALU
arithmetic

ALU
logic Comp. Smul Abs Complex.

Basic-
math

Bit-
count

Quick-
sort

6i-full 6 6 6 6 6 49 12247 44 178
4i-full 4 4 4 4 4 33 12264 44 178
4i-noalu 1 1 4 4 4 27 14499 55 201
4i-alu 4 4 1 1 1 15 12384 45 180
2i-full 2 2 2 2 2 17 12508 46 180
2i-noalu 1 1 2 2 2 15 14600 55 201
2i-alu 2 2 1 1 1 11 13012 47 198
1i 1 1 1 1 1 9 15211 57 220

Basicmath 3 1 1 1 1 11 12887
Basicmath

+25 4 1 2 2 1 18 12786
Bitcount 3 1 2 1 1 12 46
Bitcount

+25 4 2 3 1 1 15 44
Quicksort 1 1 3 1 1 11 200
Quicksort

+25 1 1 5 1 1 13 200

However, it is obvious from the simulation results that the compiler is not able to
utilise the additional units, since the number of cycles for both CAMALA proposals
is the same. They are able to achieve 89% of the maximum performance with
22% and 27% of the resources. This is still a respectable performance with low
complexity, even if the 4i-alu from the comparison set gets 99% of the performance
with barely more resources (31%).

The specialised ASIPs proposed by CAMALA would probably perform worse
if used to execute one of the other benchmarks, e.g. if the Quicksort core was
used with the Basicmath or Bitcount benchmarks. One option could be to utilise
several specialised cores, one for each different application at the cost of increased
complexity. However, CAMALA is able to propose a single ASIP for a set
consisting of any number (1 − N) of applications in the same way it was used
with sole MiBench benchmarks. The resulting ASIP would be less optimised for
any single application and more optimised for the common calculations in all the
applications.

4.5 Conclusions

This chapter described the method and tool approach for doing ASIP exploration
within the MOSART design flow. It consists of two parts: CAMALA by VTT
is aimed at algorithm-core mappability estimation as the front-end. It allows the

www.manaraa.com

4 ASIP Exploration and Design 103

designer to explore extensively algorithms and processor architectures in order
to select the best candidates for more profound studies in Synopsys Processor
Designer, where the actual design and model/tool generation for the ASIP is done.
Currently CAMALA is able to estimate mappability between an algorithm or a set
of algorithms and a single processor core. An extension for the estimation multi-
core systems consisting of several applications mapped to a set of processor cores
has been developed and will be tested in the future.

References

1. K. Chen, S. Malik, and D. I. August. Retargetable static timing analysis for embedded software.
In Proceedings of the 14th International Symposium on System Synthesis, pages 39–44, 2001.

2. N. Ghazal, R. Newton, and J. Rabaye. Retargetable estimation scheme for dsp architectures. In
Asia and South Pacific Design Automation Conference, pages 485–489, 2000.

3. J. Gong, D. Gajski, and A. Nicolau. Performance evaluation for application-specific architec-
tures. IEEE Transactions on VLSI, 3(4):483–490, December 1995.

4. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. Mibench:
A free, commercially representative embedded benchmark suite. In IEEE 4th Annual Workshop
on Workload Characterization, Austin, TX, USA, December 2001.

5. J. Kreku and J.-P. Soininen. Mappability estimate: A measure of the goodness of a processor-
algorithm pair. In International Symposium on System-on-Chip Proceedings, pages 119–122,
Tampere, Finland, November 2003.

6. U. Krishnaswamy and I. D. Scherson. A framework for computer performance evaluation using
benchmark sets. IEEE Transactions on Computers, 49(12):1325–1338, December 2000.

7. M. Lazarescu, J. Bammi, E. Harcourt, L. Lavagno, and M. Lajolo. Compilation-based
software performance estimation for system level design. In Proceedings of High Level Design
Validation and Test Workshop, pages 167–172, November 2000.

8. C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner. Time and energy efficient mapping
of embedded applications onto nocs. In Proceedings of the Asia and South Pacific Design
Automation Conference, pages 33–38, January 2005.

9. M. Oyamada, F. R. Wagner, M. Bonaciu, W. Cesario, and A. Jerraya. Software performance
estimation in mpsoc design. In Asia and South Pacific Design Automation Conference, pages
38–43, January 2007.

10. J.-P. Soininen, J. Kreku, Y. Qu, and M. Forsel. Fast processor core selection for wlan
modem using mappability estimation. In Proceedings of the 10th International Symposium
on Hardware-Software Codesign (CODES), pages 61–66, Estes Park, Colorado, 2002.

11. J.-P. Soininen, J. Kreku, Y. Qu, and M. Forsell. Mappability estimation approach for processor
architecture evaluation. In Proceedings of the 20th IEEE Norchip Conference, pages 171–176,
2002.

12. K. Suzuki and A. Sangiovanni-Vincentelli. Efficient software performance estimation methods
for hardware/software codesign. In 33rd Design Automation Conference, pages 605–610, 1996.

www.manaraa.com

Part II
System-level Exploration

www.manaraa.com

Chapter 5
System Exploration

Jari Kreku and Kari Tiensyrjä

Abstract Future embedded system products, e.g. smart handheld mobile terminals,
will accommodate a large number of applications that will partly run sequentially
and independently, partly concurrently and interacting on massively parallel com-
puting platforms. Already for systems of moderate complexity, the design space
will be huge and its exploration requires that the system architect is able to quickly
evaluate the performances of candidate architectures and application mappings. The
mainstream evaluation technique today is the system-level performance simulation
of the applications and platforms using abstracted workload and processing capacity
models, respectively. These virtual system models allow fast simulation of large
systems at an early phase of development with reasonable modelling effort and time.
The accuracy of the performance results is dependent on how closely the models
used reflect the actual system. This chapter gives a description of the ABSOLUT
modelling and simulation approach. Firstly, it gives an outline view of the approach
and its evolution. Secondly, it describes how to create different models. Thirdly, it
describes the means for simulation.

5.1 Introduction

Both the application and platform designers are facing an abundant number of
design alternatives and need systematic approaches for the exploration of the design
space. Efficient methods and tools for early system-level performance analysis are
necessary to avoid wrong decisions at the critical stage of system development.

According to [11] performance evaluation methods can be classified to three
main classes: analytical methods, simulation methods and monitoring methods.

J. Kreku • K. Tiensyrjä (�)
VTT Technical Research Centre of Finland, Kaitoväylä 1 FI-90570 Oulu, Finland
e-mail: jari.kreku@vtt.fi; kari.tiensyrja@vtt.fi

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 5,
© Springer Science+Business Media, LLC 2012

107

jari.kreku@vtt.fi;
kari.tiensyrja@vtt.fi

www.manaraa.com

108 J. Kreku and K. Tiensyrjä

Fig. 5.1 Trade-offs of
different evaluation methods

E
v

Analytical performance modelling is typical in early phases of design and methods
are based on mathematical models of the workload and the system architecture.
Markov chains, queuing models and Petri-nets are typical examples of analytical
modelling techniques. Analyses are normally based on solving the equations, but
also simulation is used as a supporting tool.

In performance simulation, the execution of a workload with a model of
execution platform is simulated. Workload modelling can be based on several
alternatives, e.g. executable programs (real application or benchmark programs),
execution traces of programs and stochastic models. Execution platform modelling
can be based on e.g. abstract resource capacity models, or virtual platform models
where instruction-set simulators are used to simulate programmable processors.

Monitoring/measurement based approaches need working prototypes of hard-
ware. The prototype is instrumented to gather performance information during the
execution of the software.

Performance analysis models are required to capture both the characteristics
of the application functionality and the architectural resources needed for the
execution. Although giving accurate results, creating such models at too low level of
abstraction, e.g. Register-Transfer-Level (RTL) or Instruction-Set-Simulation (ISS),
is not feasible due to the vast amount of details needed, heavy modelling effort
and long simulation times. Some high-level abstraction approaches like Queuing
Networks (QN) and its variants fail to exhibit the characteristics of the execution
platforms.

Performance evaluation has been approached in many ways at different levels of
refinement. The trade-offs involved by choosing an appropriate evaluation method
are shown in Fig. 5.1 (see [9]). Analytical models allow a fast evaluation of a
relatively large fraction of the design space, enabling the identification of corner
cases of the design. Over several possible steps of refinement with increasing effort
for implementation and evaluation the design space can be bound to one particular
design point.

SPADE ([22]) implements a trace-driven, system-level co-simulation of applica-
tion and architecture. The application is described by Kahn process networks using

www.manaraa.com

5 System Exploration 109

YAPI ([4]). Symbolic instruction traces generated by the application are interpreted
by architecture models to reveal timing behaviour. Abstract, instruction-accurate
performance models are used for describing architectures.

The Artemis work by [28] extends the work described in [22] by introducing
the concept of virtual processors and bounded buffers. One drawback of restricting
the designer to using Kahn process networks is the inability to model time-
dependent behaviour. In the developed Sesame modelling methodology a designer
first selects candidate architectures using analytical modelling and multi-objective
optimization. The system-level simulation environment allows for architectural
exploration at different levels of abstraction while maintaining high-level and
architecture-independent application specifications by applying dataflow graphs
in its intermediate mapping layer. These dataflow graphs take care of the run-
time transformation of coarse-grained application-level events into finer grained
architecture-level events that drive the architecture model components.

The basic principle of the TAPES performance evaluation approach in [31] is
to abstract the involved functionalities by processing latencies and to cover only
the interaction of the associated sub-functions on the architecture, represented
as inter-SoC-module transactions, without actually running the corresponding
program code. This abstraction enables higher simulation speed than an annotated,
fully-fledged functional model. Each sub-function is captured as a sequence of
transactions, also referred to as trace. The binding decision for the sub-functions
is considered by storing the corresponding trace in the respective architectural
resource. A resource may contain several traces, one per each sub-function that
is bound to it. The application is then simulated by forwarding packet references
through the system and triggering the traces that are required for processing
particular data packets in the respective SoC modules.

MESH [27] looks at resources (hardware building blocks), software, and sched-
ulers/protocols as three abstraction levels that are modelled by software threads on
the evaluation host. Hardware is represented by continuously activated, rate-based
threads, whereas threads for software and schedulers have no guaranteed activation
patterns. The software threads contain annotations describing the hardware require-
ments, so-called time budgets that are arbitrated by scheduler threads. Software time
budgets are derived beforehand by estimation or profiling. The resolution of a time
budget is a design parameter and can vary from single compute cycles to task-level
periods. The advance of simulation time is driven by the periodic hardware threads.
The scheduler threads synchronize the available time budgets with the requirements
of the software threads.

SpecC ([7]) defines a methodology for system design including architecture ex-
ploration, communication synthesis, validation, and implementation. These phases
must mainly be carried out manually as there are no tools that could automatically
perform them. Therefore, SpecC can be considered more as a specification and
modelling language that has a rich support for many system design phases. Similar
properties can be found also in SystemC language that is more widely adopted
in high-level system modelling. Especially, the transaction-level modelling using

www.manaraa.com

110 J. Kreku and K. Tiensyrjä

SystemC has been adopted for performance modelling and simulation ([8]), and
OSCI has published the version 2.0 of its SystemC Transaction-Level Modeling
standard.

Posadas et al. [29] presents a C++ library for timing estimation at system level.
The library is based on a general and systematic methodology that takes as input the
original SystemC source code without any modification and provides the estimation
parameters by simply including the library within a usual simulation. As a conse-
quence, the same models of computation used during system design are preserved
and all simulation conditions are maintained. The method exploits the advantages
of dynamic analysis, that is, easy management of unpredictable data dependent
conditions and computational efficiency compared with other alternatives (ISS or
RTL simulation), without the need for software (SW) generation, compilation and
hardware (HW) synthesis.

Koski ([12]) is an automated SoC design methodology focusing on abstract
modelling of application and architecture for early architecture exploration, methods
to generate the models from the original design entry, system-level architecture
exploration performing automatically allocation and mapping, tool chain supporting
the defined methodology utilizing a graphical user interface, well-defined tool
interfaces, a common intermediate format, and a simulation tool that combines
abstract application and architecture models for co-simulation.

5.2 ABSOLUT System Modelling

The performance modelling and evaluation approach of VTT’s ABSOLUT as used
within the MOSART methodology follows the Y-chart model as depicted in Fig. 5.2
([14, 15]).

The layered hierarchical workload models represent the computation and com-
munication loads the applications cause on the platform when executed. The
layered hierarchical platform models represent the computation and communication
capacities the platform offers to the applications. The workload models are mapped
onto the platform models and the resulting system model is simulated at transaction-
level to obtain performance data.

ABSOLUT, depicted in Fig. 5.3, is a model-based approach for system-level
design that is capable of performance evaluation of future real-time embedded
systems and provides early information for development decisions.

The earlier SystemC-based workload-platform performance modelling and sim-
ulation approach in [17, 18] was extended in [19] by introducing layering and
hierarchy to both the workload and platform models. This enables combining the
top-down refinement type application modelling and bottom-up composition type
platform modelling. Both are based on service-oriented approach with defined
service interfaces ([13]), which brings scalability to both of the sides. The approach
takes service orientation into focus, i.e. applications are modelled in terms of
services they deliver to the user and request from the execution platform, and

www.manaraa.com

5 System Exploration 111

Fig. 5.2 MOSART design flow at the system-level exploration level

the execution platforms are modelled in terms of services provided. The layered
hierarchical workload models represent the computation and communication loads
the applications cause on the platform when executed. The layered hierarchical
platform models represent the computation and communication capacities the plat-
form offers to the applications. The workload models are mapped onto the platform
models ([16]) and the resulting system model is simulated at transaction-level to
obtain performance data. The tool support is based on open source SystemC2
simulation library of Open SystemC Initiative (OSCI). The approach enables
performance evaluation early, exhibits light modelling effort, allows fast exploration
iteration, reuses application and platform models, and provides performance results
that are accurate enough for system-level exploration ([14, 15]). Recently, an
automatic tool based on a modified compiler has been developed to enable easy
workload generation from source code ([20]).

www.manaraa.com

112 J. Kreku and K. Tiensyrjä

Fig. 5.3 Y-chart model of
ABSOLUT

_ _

_

_

The starting points for the performance modelling are the end-user requirements
of the system. These are modelled as a service-oriented application model, which
has a layered hierarchy. The top layer consists of system level services visible to the
user that are composed of sub-services and divided further to primitive services.

The purpose of workload modelling is to illustrate the load an application causes
to an execution platform when executed. Workload models are non-functional in
the sense that they do not perform the calculations or operations of the original
application. Workload modelling enables performance evaluation already in the
early phases of the design process, because the models do not require that the
applications are finalised. Workload modelling also enhances simulation speed as
the functionality is not simulated and models can be easily modified to quickly
evaluate various use cases.

Platform modelling comprises the description of both hardware and platform
software (middleware) components and interconnections that are needed for per-
formance simulation. Like workload modelling, platform modelling considers
hierarchical and repetitive structures to exploit topology and parallelism. The
resulting models provide interfaces, through which the workload models use the
resources and services provided by the platform ([13]).

After mapping the workloads to the platform, the models can be combined
for transaction-level performance simulation in SystemC. Based on the simulation
results, we can analyse e.g. processor utilisation, bus or memory traffic and
execution time.

www.manaraa.com

5 System Exploration 113

Fig. 5.4 Workload models have a hierarchical structure

5.2.1 Application Models

Applications are modelled as workloads, which characterise the control flow and
the loads of the data processing and communication of applications on the execution
platform. Therefore the models can be created and simulated before the applications
are finalised, enabling early performance evaluation. As opposed to most of the
performance simulation approaches, the workload models do not contain timing
information. It is left to the platform model to find out how long it takes to process
the workloads. This arrangement results in enhanced modelling and simulation
speed. It is also easy to modify the models, which facilitates easier evaluation of
various use cases with minor differences. For example, it is possible to parameterise
the models so that the execution order of applications varies from one use case to
another.

The workload models have a hierarchical structure, where top-level workload
model W divides into application workloads Ai, 1 ≤ i ≤ N for different processing
units of the physical architecture model (Fig. 5.4):

W =Ca,A1,A2, . . . ,An (5.1)

www.manaraa.com

114 J. Kreku and K. Tiensyrjä

Fig. 5.5 Top-level and application workloads consist of lower level items and control

where Ca denotes the common control between the workloads, which takes care of
the concurrent execution of loads mapped to different processors. n is the number
of application workloads under the top-level workload.

The structure of the main workload model and the application workloads is
depicted in the UML diagram of Fig. 5.5. The application and process control are
shown as classes in the diagram; however, they may be implemented using e.g.
standard C++ control structures in SystemC based workload models.

Process and function workload models can also be statistical. In this case
the model will describe the total number of different types of load primitives
and the control is a statistical distribution for the primitives (Fig. 5.6). This is
beneficial in case the chosen load extraction method is not accurate enough so
that functions and/or basic blocks could be modelled in detail. Less important, e.g.
background, workloads can also be modelled this way for reducing the modelling
effort. Workload models using deterministic process models but statistical function
models are more accurate than those using statistical process models. Models, which
are deterministic down to basic block level are of course the most accurate.

5.2.1.1 Application Layer

Each application workload Ai is constructed of one or more processes Pi:

Ai =Cp,P1,P2, . . . ,Pn (5.2)

www.manaraa.com

5 System Exploration 115

Fig. 5.6 The process workloads can be either statistical or deterministic

Table 5.1 Public Application interface

Methods and members Description

Application (sc module name name, Subsystem∗ host) Constructor
virtual void exec app () = 0 Pure virtual method, which

triggers the simulation
of the application model

where Cp corresponds to the control between the processes. Sequential applications
consist of a single process, whereas parallel (multi-threaded) applications contain
several processes.

In the SystemC implementation the base classes of all layers, including Ap-
plication (Table 5.1), are derived from a generic Workload class. The constructor
parameters of Application are name, which is a unique SystemC name for the
created object, and host, which is the subsystem to which the application is
mapped. The application behaviour, i.e. starting and stopping of processes, should
be implemented in derived models inside the exec app () function.

www.manaraa.com

116 J. Kreku and K. Tiensyrjä

Table 5.2 Public Process interface

Methods and members Description

Process (sc module name name, Proc ctl IF ∗
host , bool loop = PROCESS NORMAL)

Constructor

5.2.1.2 Process Layer

The processes are comprised of function workloads Fi:

Pi =Cf ,F1,F2, . . . ,Fn (5.3)

where Cf is control and describes the relations of the functions. The operating
system models of the platform handle workload scheduling at the process level.

The public interface of the Process base class consists of only the constructor
(Table 5.2). The constructor parameters are:

• sc module name name, which is unique SystemC name for the Process object (as is
usual for SystemC models)

• Proc ctl IF ∗ host, which is the operating system model handling the scheduling of
the process

• bool loop, which defines whether the process is executed in an infinite loop
(PROCESS INFINITE) or not (PROCESS NORMAL, the default).

Looped execution can be useful for modelling constant background load, which is
e.g. started at the beginning in the simulation and left running until the end.

Internally Process contains wrappers around the SystemC wait () functions so that
the process workloads are automatically stopped when waiting for SystemC events
and started again after reception. There is also a SystemC thread, whose contents
must be implemented by each process workload model derived from the base class.
The thread should contain the control, which defines how the simulation of the
process progresses from one function to another.

5.2.1.3 Function Layer

Function workload models are basically control flow graphs ([18])

Fi = (V,G) (5.4)

where nodes vi ∈ V are basic blocks and arcs gi ∈ G are branches. Real, high-level
applications implement control inside functions as for, do, or while loops and if
statements. In low-level code these are implemented with comparison instructions
(less than, greater than, equal to, . . .) and conditional branches. It is decided
dynamically during the execution of the application if the branches are taken or
not and the decision depends on the data. However, with the ABSOLUT approach

www.manaraa.com

5 System Exploration 117

Table 5.3 Public Function interface

Methods and members Description

Function(sc module name name, Primitive IF ∗ host ,
Address read addr , Address write addr)

Constructor

virtual void exec fn () = 0 Pure virtual method, which
triggers the simulation of the
function model

int branch test () Used for statistically selecting the
next basic block for simulation

the actual data processing of the application is abstracted away and, as a result, data
dependent selection of branches can not be done. Instead, the branches are simulated
statistically and each branch has a probability P, which defines the likelihood of the
branch being taken.

The basic blocks are ordered sets of load primitives used for load characterization
and are described in the next section.

Function () is the constructor of the SystemC base class for function models
(Table 5.3) and it takes a sc module name object as a parameter as is usual for
SystemC models. The second parameter, host, is a pointer to the part of the platform
(operating system) that will run the function. Finally, read addr and write addr define
the addresses for read and write primitives within the function.

branch test () is a helper function, which invokes the random number generator
for simulating the branches. The return value is between 0 and 232 based on which
the proper branch should be selected. exec fn () is a virtual function, which must be
implemented by the derived models. It should contain the implementation of the
control flow using the branch test () . For example,

bb 49 :
node 49 () ;

b = b r a n c h t e s t () ;
/ / t a r g e t bb 50 (P = 70.000000%)
i f (b < 7000)

goto bb 50 ;
/ / t a r g e t bb 51 (P = 30.000000%)
goto bb 51 ;

where node 49() would contain the load primitives of the 49th basic block.
exec fn () may be called by process workloads and other function workloads to
trigger the execution of the function.

5.2.1.4 Load Primitive Layer

Load primitives form the lowest layer of application models. They are generic,
abstracted versions of the instructions of processing units. Different processing units
may have a different set of instructions, whereas the load primitives are the same for

www.manaraa.com

118 J. Kreku and K. Tiensyrjä

all workloads. As a consequence, the workload models can be mapped to different
processing units without changes.

The instructions of processors can be categorised as data processing instructions
(arithmetic, boolean, shifts, . . .), control flow instructions (jumps, branches, calls),
and load/store instructions. The load and store instructions cause contention to the
interconnections and memories of the system, which are typically shared resources.
On the other hand, the effects of the rest of the instructions stay within the processor
at least if the instruction fetches are not considered, i.e. the impact on the other parts
of the system is limited. Therefore, the load primitives consist of the following:

• Read, which simulates a memory load instruction;
• Write, which simulates a memory write instruction;
• Execute, which simulates all the other instructions.

The load primitive layer consists of a number of consecutive primitives. The
primitives may be coalesced: e.g. instead of five consecutive execute primitives
there is a single execute (5) . The primitives are transferred from the workload
side to the platform side through the blocking primitive interface (Sect. 5.2.5.1),
which contains a separate interface function for each primitive. Typically, the load
primitive layer is implemented in the same source file as the function layer. For
example, the following code extract shows the implementation (primitives) of the
49th basic block of the previous example:

i n l i n e void main WL : : node 49 ()
{

m host−>r e a d (m read addr , 4 , 8) ;
m host−>e x e c u t e (2) ;

}

where m host is the operating system, which is hosting the function.

5.2.2 Platform Models

The platform model is an abstracted hierarchical representation of the actual
platform architecture. It contains cycle-approximate timing information along with
structural and behavioural aspects. The platform model is composed of three layers:
component layer, subsystem layer, and platform architecture layer (Fig. 5.7).

Each layer has its own services, which are abstraction views of the architecture
models. They describe the platform behaviours and related attributes, e.g. perfor-
mance, but hide other details. Services in the subsystem and platform architecture
layers can be invoked by workload models. High-level services are built on low-level
services, and they can also use the services at the same level. Each service might
have many different implementations. This makes the design space exploration

www.manaraa.com

5 System Exploration 119

Fig. 5.7 The execution
platform model consists of
platform, subsystem and
component layers

Platform

Subsystem

Component

1 .. *1 .. *

1 .. *1 .. *

<<interface>>
ComponentServices

<<interface>>
SubsystemServices

<<interface>>
PlatformServices

process easier, because replacing components or platforms by others could be easily
done as long as they implement the same services.

5.2.2.1 Platform Layer

The platform architecture layer is built on top of the subsystem layer by incorporat-
ing platform software and serves as the portals that link the workload models and
the platforms in the mapping process. Platform-layer services consist of service
declaration and instantiation information. The service declaration describes the
functionalities that the platform can provide. Because a platform can provide the
same service with quite different manners, the instantiation information describes
how a service is instantiated in a platform.

The platform-layer services are divided into several categories with each category
matching one application domain, e.g. video processing, audio processing and
encryption/decryption. The OS system call services are in an individual domain,
and as mentioned earlier they can also be invoked by other services at the same
level. A number of platform-layer services are defined for each domain and more
could be added if necessary.

Application workloads typically call platform or subsystem level services,
process workloads call subsystem services, and function workloads call component-
level services. Ideally, all services required by the application are provided by
the execution platform and there is a 1:1 mapping between the requirements and
provisions. However, often this is not the case and the workloads need to use several
lower level services in combination to produce the desired effect.

www.manaraa.com

120 J. Kreku and K. Tiensyrjä

5.2.2.2 Subsystem Layer

The subsystem layer is built on top of the component layer and describes the
components of the system and how they are connected. The services used at this
layer could include e.g. video preprocessing, decoding and postprocessing for a
video acceleration subsystem.

The model can be presented as a composition of structure diagrams that instanti-
ates the elements taken from the library. The load of the application is executed on
processing elements. The communication network connects the processing elements
with each other. The processing elements are connected to the communication
network via interfaces.

5.2.2.3 Component Layer

This layer consists of processing (e.g. processors, DSPs, dedicated hardware and
reconfigurable logic), storage, and interconnection (e.g. bus and network structure)
elements. An element must implement one or more types of component-layer
services. For example, a network interface component should implement both
master and slave services. In addition, some elements need to implement services
that are not explicitly defined in component-layer services, e.g. a bus shall support
arbitration and a network shall support routing.

The component-layer read, write and execute services are the primitive services,
based on which higher level services are built. The processing elements in the
component layer realise the low-level workload-platform interface, through which
the load primitives are transferred from the workload side. The processing element
models will then generate accesses to the interconnections and slaves as appropriate.

All the component models contain cycle-approximate or cycle-accurate timing
information. Specifically, the data path of processing units is not modelled in detail;
instead the processor models have a cycles per instruction (CPI) value, which is
used in estimating the execution time of the workloads. For example, the execution
time for data processing instructions is the number of instructions to execute times
CPI (). Furthermore, caches and SDRAM page misses, for example, are modelled
statistically since the workload models typically do not include accurate address
information.

The SystemC implementation of the generic ABSOLUT base class for all com-
ponent models, Component, provides only the constructor as its public interface.
It has a single parameter for the SystemC module name. Internally there is a
method for simulating cycle-based latencies in the operation of the models derived
from Component. Finally, a number of macros define parameters common to all
components, including base address and clock period. The base address is only
required for identification of the components: an accurate memory map is not
needed by ABSOLUT.

ABSOLUT base classes exist also for master and slave models with OCP TL2
protocol interfaces. These are derived from Component and can be used to quickly

www.manaraa.com

5 System Exploration 121

Fig. 5.8 Power state machine

implement new components using the OCP interface. The Master and Slave classes
include an OCP master and slave port respectively. The Master provides helper
methods for sending requests to the OCP port and obtaining responses from the port.
Correspondingly, the Slave class has methods for obtaining requests from the slave
port, processing them and sending responses back to the initiating master model.

5.2.2.4 Modelling of Power Consumption

The concepts of power-managed system modelled as a set of interacting power
manageable components (PMC) controlled by a power manager were introduced
in [1]. A PMC can be managed internally, which means that a component model
has an internal power manager, or externally, where information for power control
comes basically from the OS and/or application. The power consumption states are
presented in the component model as a power state machine (PSM) depicted in [2].

The ABSOLUT power modelling extension divides in practice into two: One
is included in the resource simulation model that facilitates the registration of
time the resource spends in each of its power states during simulation through
instrumentation called power probes. The other is associated to the power analysis
for calculating the power consumed at each state off-line the actual simulation.

The power state machine used in modelling is depicted in Fig. 5.8. In the Off
state the resource does not contribute to power consumption. When operational,
the Active state power is consumed when a resource of the platform is excited by
transactions of the workload model, otherwise the resource consumes Idle state
power or Sleep state power. The transitions between Idle and Active states are
internal. The transitions between Idle and Sleep states can be controlled internally
or externally. The transitions between Idle and Off states are controlled externally.

The three main approaches for controlling power consumption include:

• Change of component power mode: Active, Idle, Sleep and Off.
• Dynamic voltage and frequency scaling (DVFS).
• Application-driven dynamic power management (DPM).

www.manaraa.com

122 J. Kreku and K. Tiensyrjä

The external control in ABSOLUT can be implemented through exploiting the high-
level service interface when the respective service is available in the resource model.

The power consumption values for processor cores can be obtained from e.g.
data sheets or reference designs ([6]) for power state model approaches. The energy
consumption of a CPU for a time period T is calculated as:

Ec = PaTa +PsTs +PiTi (5.5)

where Pa, Ps and Pi are power consumption in active, sleep and idle states and,
correspondingly, Ta, Ts and Ti are the time spent in the same states. The time period
T = Ta + Ts + Ti can be selected according to the interests, e.g. start and end of a
service or some other functionality.

The memory power state machine is basically the same as in Fig. 5.8, where
the Active state refers to read or write to/from the memory and the Sleep state
refers to taking the memory to standby. ABSOLUT simulation probes register the
time (as numbers of cycles) spent in each of the power states that is then used to
calculate power consumed. Energy consumption of memory for a time period T is
calculated as:

Em = PrTr +PwTw +PiTi (5.6)

where Pr and Pw are power consumption in read and write states and Tr and Tw are
the time spent in the corresponding states.

Power consumption values for memories can be found in data sheets, e.g. [25].
There are also power calculators available for different DRAMs ([24]). Applicable
to different memory types, e.g. SRAM and eDRAM, CACTI 5.0 is a tool for
modelling the dynamic power, access time, area, and leakage power ([30]). The
special features of memories should be taken into account when defining the power
values for different power states.

For a bus, the active and idle states are registered. The power model is based on
average power consumption in these states. Energy consumption of bus for a time
period T is calculated as:

Eb = PaTa +PiTi (5.7)

Power consumption values for buses are not so straightforward to obtain due to
configuration complexity. Several papers describe using of the Hamming distance to
account for changes of states of bus wires, e.g. [3]. Gate-level power simulation is
used in [5] to characterise CoreConnect based system for transaction-level power
estimation. An analysis of AMBA bus architecture is presented in [21] giving
breakdown information about how much different bus elements contribute to power
consumption.

www.manaraa.com

5 System Exploration 123

Calculating Power and Energy Consumption

If we assume that the power consumption of the components in each of the different
states is given as parameters to the models, we can estimate the total power
consumption Pi at time i:

Pi = ∑
n

Pn,i (5.8)

where Pn,i is the instantaneous power consumption of component n. The total energy
consumption of the entire system during the execution of the use case is calculated
using the following formula

E = ∑
n

En = ∑
n

∑
i

Pn,iti (5.9)

It is not reasonable for the system simulation model to calculate P for each time
delta due to the huge amount of data it would generate and because it might have an
adverse effect on simulation speed. Instead, it should be sampled like the component
utilisation is at the moment.

Furthermore, the components may support dynamic voltage and frequency
scaling (DVFS). In general, frequency has a linear effect on power consumption,
whereas doubling the voltage quadruples power consumption. Thus,

Pf ,V = Pn
fV 2

fnV 2
n

(5.10)

where Pv, f is the new power consumption of the component using frequency f and
voltage V , with normal power consumption of Pn at frequency fn and voltage Vn.

It should be noted that the energy required for doing a specific amount of
computation does not scale directly with the frequency. With a lower frequency
the computation simply lasts longer:

E = Pt = fCV 2 N
f
=CV 2N (5.11)

where N is the number of cycles required by the computation. Frequency scaling
can still be a useful mechanism, e.g. in cases where the application workload can be
somehow scaled, or in case the voltage can be scaled due to scaling of the frequency.

5.2.3 Mapping Workloads to the Platform

In order to facilitate simulation of the system model consisting of both the
application and platform models, the applications need to be mapped to the platform.
Mapping involves choosing the part of the platform, which will host (execute) each

www.manaraa.com

124 J. Kreku and K. Tiensyrjä

particular workload model, and which instruction and data memory or memories
they will utilise. Mapping the execution is done during the initialisation of the
workload model, i.e. each workload model receives a pointer to its host as a
constructor parameter. The mapping is done in several layers in such a way that:

• Application workload models are mapped to subsystem models,
• Process workload models are mapped to operating system models (inside

subsystems), and
• Function workload models are mapped to processing unit models.

For example, the following code sequence initialises a subsystem and a video
player application. The second constructor parameter of the video player application
model maps the application to the subsystem.

s s = new S i m p l e subsys t em (” s s ”) ;
sva = new S i m p l e v i d e o a p p (” sva ” , s s) ;

Then, the application model maps its processes to the operating system model
first in the constructor of the process model and then by registering the processes
to the OS model through the process control interface (Table 5.6). Inside the
Simple video app this would be implemented as follows:

svp = new S i m p l e v i d e o p r o c e s s (” svp ” , m host−>os ()) ;
m host−>os ()−> r e g i s t e r p r o c e s s (svp , REGISTER PROCESS RUNNING) ;

The operating system model is already mapped to a fixed set of one or more
processors in its initialisation. Thus, the process model will just distribute its pointer
to the OS model when mapping the functions to the processing units. Specifically
inside the Simple video process :

v i d e o p o s t p r o c e s s f n = new V i d e o p o s t p r o c e s s f n (”
v i d e o p o s t p r o c e s s f n ” , hos t , m v i d e o d a t a a d d r ,
m f r a m e b u f f e r a d d r) ;

The second parameter, host, of the function constructor call above defines the
processing unit that will execute the function during the simulation.

The memory mapping is done via memory addresses, which are used as
parameters to high- and/or low-level interface calls. These addresses could for
example be hard-coded in the models. However, the recommended way is to set
these up as model parameters in the process workloads, and the process workloads
then distribute the addresses to function workloads during their initialisation.
For example, in the Simple video process there could be three memory address
parameters:

PARAM DECL(Address , v i d e o a p p a d d r)
PARAM DECL(Address , v i d e o d a t a a d d r) ;
PARAM DECL(Address , f r a m e b u f f e r a d d r) ;

which define the location for the video player application (code), video data, and
video framebuffer (display) respectively. These parameters are given as parameters
to the function workload constructors:

www.manaraa.com

5 System Exploration 125

v i d e o m a i n f n = new V i d eo m a i n fn (” v i d e o m a i n f n ” , hos t ,
m v i deo app addr , m v i d e o a p p a d d r) ;

v i d e o p o s t p r o c e s s f n = new V i d e o p o s t p r o c e s s f n (”
v i d e o p o s t p r o c e s s f n ” , hos t , m v i d e o d a t a a d d r ,
m f r a m e b u f f e r a d d r) ;

v i d e o e x i t f n = new V i d e o e x i t f n (” v i d e o e x i t f n ” , hos t ,
m v i deo app addr , m v i d e o a p p a d d r) ;

The last two parameters of the function workload constructor define the addresses
for read and write primitives respectively.

5.2.4 Service Models

The services inside the platform can model either hardware or software services.
In ABSOLUT, software services are modeled as workload models, but unlike
application models, they are integrated in the platform model and easily reusable by
the applications. If the service is provided by a process or a set of processes running
in the system, the service model consists of application or process layer workloads.
If the service is implemented as a library, the model will be at the function layer.
Service models can utilize other services, but eventually they consist of the same
read/write/execute load primitives as the application models.

There are two alternatives how to implement a HW service: It can be imple-
mented simply as a delay in the associated component, if the processing of the
service does not affect the other parts of the system at all. In this case the service
must not perform I/O operations or request other services. The second alternative is
to implement the service as read, write and possibly execute primitives like the SW
services, but in this case they are executed inside the HW component and not inside
a process workload running on one of the processor models.

5.2.4.1 Service Registration

Services can be registered in either the subsystem or platform layer of the execution
platform model. Subsystem-local services are registered only to the local OS model,
whereas system-wide services are further registered by the local OS to the master
OS, which implements global service registry.

5.2.4.2 Service Use

Process or function workload models can request high-level services from the
platform model through the generic service interface (Table 5.4). The services are
requested from the local operating system model, which will relay the service

www.manaraa.com

126 J. Kreku and K. Tiensyrjä

Table 5.4 The services of the platform model are exploited via the high-level interface

Interface function Description

Serv id use service (std :: string name, Serv attr attr) Request service name using attr
as parameters

void wait service (Serv id id) Wait untile the completion of
service id

Table 5.5 The low-level interface consists of functions intended for transferring load primitives
between workload and platform models

Interface function Description

void read (Address a, unsigned W, unsigned B) Read W words of B bits from address A
void write (Address a , unsigned W, unsigned B) Write W words of B bits to address A
void execute (unsigned N) Simulate N data processing instructions

request to the service provider if the implementation of the service can be found
in the same subsystem. Otherwise, the OS model relays it to the master OS, which
will call the correct subsystem.

The workload model does not need to know where implementation of the service
resides. It will just request the service, pass it some service-dependent attributes and
optionally wait for the completion of the service.

5.2.5 Interfaces

5.2.5.1 Application to Platform Interfaces

Generic Service Interface

The high-level interface enables workload models to request services from the
platform model (Table 5.4). These functions can be called from workload models
between the function and application layers. The use service () call is used to request
the given service and it is non-blocking so that the workload model can continue
while the service is being processed. use service () returns a unique service identifier,
which can be given as a parameter to the blocking wait service () call to wait until
the requested service has been completed, if necessary.

Load Primitive Interface

The low-level interface is intended for transferring load primitives and is depicted
in Table 5.5. The functions of the low-level interface are blocking – in other words
a load primitive level workload model is not able to issue further primitives before
the previous primitives have been executed. Load extraction methods are typically

www.manaraa.com

5 System Exploration 127

Fig. 5.9 During simulation process workloads send load primitives and service calls to the
platform model

not able to extract accurate address information for the load primitive layer of the
workloads. Hence, the address parameter of the read and write functions often
just corresponds to the base address of the memory block, which is used by the
workload.

5.2.5.2 Operating System and its Interfaces

In simple cases the execution of workloads can be scheduled manually by hard-
coding it to the models. However, it is not recommended. Typically the platform
model includes one or more operating system (OS) models, which control access
to the processing unit models of the platform by scheduling the execution of
process workload models (Fig. 5.9). The OS model provides both low- and high-
level interfaces to the workloads and relays interface function calls to the processor
or other models which realise those interfaces. The OS model will allow only those
process workloads which have been scheduled for execution to call the interface
functions. Rescheduling of process workloads is performed periodically according
to the scheduling policy implemented in the model.

Process Control Interface

The OS model extends the primitive interface with a number of functions for
registering, starting, stopping and killing process workloads (Table 5.6). For
mapping a process workload to an OS model, the process must be registered with

www.manaraa.com

128 J. Kreku and K. Tiensyrjä

Table 5.6 The process control interface extends the primitive interface with a number of functions

Interface function Description

register process (Process∗ p, bool start) Inform the operating system model of the
process workload model p. If
start == true, the process is started
immediately. Otherwise it will wait in
the stopped state until explicitly started
with start process ()

start process (pid t pid) Start the process with the given process id
stop process (pid t pid) Stop the process with the given process id
kill process (pid t pid) Kill (unregister) the process with the given

process id

Table 5.7 The service registration interface contains only one function

Interface function Description

register service (provider , name, type) Register a service name of type provided by provider

register process () . For the OS model to actually schedule the process for execution
the process must be started. Processes can also be stopped to temporarily disable
them (e.g. while they are waiting for an external event) and killed once they are not
needed anymore. Killing a process just removes its mapping to the operating system
model and does not delete the process workload object.

Service Registration Interface

High-level services must be registered to OS models so that application models can
utilise them through the generic service interface (Table 5.4). Service registration
interface (Table 5.7) consists of a single function register service () , which takes a
pointer to the service provider, service name, and service type as parameters. The
service provider can be any model, which realises the generic service interface, e.g.
a platform component or a process workload model.

The service provided must provide the generic service interface of Table 5.4.

5.2.6 Model Parameters

ABSOLUT provides a number of macros for adding parameters to both application
and platform models. Parameters are useful for setting up model latencies, for
example. The values of the parameters are read from a configuration file during
the system model initialisation and thus changing the values does not require
recompilation.

www.manaraa.com

5 System Exploration 129

PARAM DECL(type, name) macro is used in the header files of models to declare
parameters, which are constant. Normal C++ rules apply to the type and name of
the parameter. PARAM DECL VAR(type, name) macro declares parameter, whose value
can be changed during the simulation. If the declaration is in the public part of the
class declaration, all workload and execution platform models are able to modify its
value through method name(value).

PARAM SET(type, name) macro is used in the implementation of model construc-
tors. It will automatically obtain the value of the parameter from a configuration
file when the model is constructed. By default, this configuration file is config in
the directory where the simulation is started. Type and name must be exactly the
same as in the corresponding PARAM DECL() or PARAM DECL VAR(). PARAM SET3

(type, name, defval) behaves the same as PARAM SET() with one exception. The third
parameter, defval , defines a default value which will be used if the configuration file
does not specify a different value.

PARAM VALUE(name) macro contains the value of a parameter declared with
PARAM DECL(type, name) or PARAM DECL VAR(type, name) macro.

5.3 ABSINTH Workload Model Generator

ABSINTH (ABStract INstruction exTraction Helper) presented [20] is a tool for
generating workload models from application source code. ABSINTH has been
implemented by extending GNU Compiler Collection (GCC) version 4.3.1 with two
additional passes. It can be triggered with a single switch during the compilation of
any source code supported by GCC.

The first ABSINTH pass is responsible for constructing the function layer of
the workload model, i.e. the control flow between basic blocks in each source
code function. The second pass will traverse RTL (GCC’s low-level intermediate
language) to extract load primitives read, write, and execute for each basic block.

There are three phases in the model generation process with ABSINTH:

1. First, the source code must be compiled with profiling,
2. Then, the compiled binary must be executed with a data set corresponding to the

use case, and
3. Finally, the source code must be compiled again with both profile-guided

optimization and ABSINTH enabled

5.3.1 Interface Between IMEC MPA and ABSOLUT

The IMEC’s MPSoC Parallelization Assist (MPA) is a tool for efficiently mapping
applications onto multicore platforms ([26]). It takes the sequential C source code

www.manaraa.com

130 J. Kreku and K. Tiensyrjä

and a parspec file describing its computational partitioning as input. The tool
performs the partitioning, inserting communication and synchronisation as required
to respect the dependencies in the sequential application.

The interface between MPA and ABSOLUT is based on modelling primitives
of the MPA-API (RTlib) as services in ABSOLUT. This facilitates generation
of workload models of the MPA parallelised code using ABSINTH workload
generation, and mapping them onto a multi-core execution platform model for
performance simulation.

5.4 ABSOLUT Performance Simulation

The executable simulation model of the combined workload and execution platform
models is based on the OSCI SystemC library, extended with configurable instru-
mentation. During the simulation of the system model the workloads send load
primitives and service calls to the platform model. The platform model processes
the primitives and service calls, advancing the simulation time while doing so. The
simulation run will continue until the top-level workload model stops it when the
use case has been completed.

The platform model is instrumented with counters, timers and probes, which
record the status of the components during the simulation. These performance
probes are manually inserted in the component models where appropriate and are
flexible so that they can be used to gather information about platform performance
as needed. They can also be used inside application models as well. After simulation
the performance probes output the collected performance data to the standard
output. A C++-based tool, VODKA, is used for viewing e.g. processor utilization,
bus and memory traffic and execution time, graphically.

5.4.1 Performance Probes

Performance probes can be used to extract performance data of e.g. component
utilisation, request / response traffic, or latencies during the simulation run. The
probes are inserted manually in the models in appropriate places. It is up to the user
to decide, what information to extract and where to put the probes to extract it.

5.4.1.1 Status Probe

Status probe implements a two-state (e.g. on/off, busy/idle) probe, which measures
the time spent in both states and calculates the proportion of time spent in each
state. Status probes are intended to collect information about e.g. the utilization of
components and scheduling of processes performed by the operating system models.

www.manaraa.com

5 System Exploration 131

They can record the new status of a component and the time that was spent in the
previous state each time it changes. They will also periodically record the time
spent in each state in an interval. For example, the existing processor, accelerator
and memory models use this to record, how the utilisation of those components
changes as a function of time. The VODKA tool is able to show the resulting curves
graphically.

Sample output from an ARM model:

p.ss.arm: Idle: 57.9338% [2.87158e+09 ns]
p.ss.arm: Busy: 5.82825% [2.88886e+08 ns]
p.ss.arm: Waiting: 36.238% [1.79619e+09 ns]

where the ARM has spent 58% of simulation time idling, 6% processing data, and
36% waiting for memory accesses to complete. The numbers in square brackets give
the corresponding time in nanoseconds.

5.4.1.2 Timer

Timers are used to measure the elapsed time in system events during the simulation,
including task switch times of the OS models and processing times of services.

A timer will display the average, minimum, and maximum time measured by the
probe during the simulation. For example,

p.ss.dif.disp_upd: 8.6e+6 (8.2e+6-9.2e+6) [248]

where the display interface has updated the screen 248 times and it has taken 8.6 ∗
106 ns on average. The fastest update took 8.2 ∗ 106 ns and the slowest 9.2 ∗ 106 ns.

5.4.1.3 Counter

Counters are used to calculate the number of load primitives, service calls, requests
and responses performed by the components.

In the following sample

p.ss.os.counter_task_switches: 744

the operating system model has performed 744 task switches during the simula-
tion run.

5.5 Case Example

The ABSOLUT approach has been applied to a JPEG encoding case example. The
application in this case is a JPEG encoder written in the C language. The original
source code is purely sequential and utilises only a single thread of execution. For

www.manaraa.com

132 J. Kreku and K. Tiensyrjä

2

Fig. 5.10 Applying MPA and ABSINTH in JPEG encoder case study

the case example several parallel versions of the JPEG encoder were created with
the IMEC MPA. The platform model contained a model of the MPA runtime library
for thread management. The process is depicted in Fig. 5.10.

ABSINTH was used to generate four sets of workload models from the encoder
source code. The first one was from the unmodified sequential application and the
other three from parallelised versions of the application: Par-1 had two threads with
the second thread executing Getblock and DCT algorithms. Par-2 consisted of three
threads with the second and third one interleaving the execution of Getblock, DCT,
and Quantization. Par-3 had also three threads with the second and third thread
executing just Getblock and DCT in an interleaved manner.

The execution platform model is depicted in Fig. 5.11. It consists of 4 ARM
nodes connected by routers, which form a ring-like network. Each node has an
ARM9 CPU, local SRAM memory, a shared bus, and an interface to the other nodes.
The essential parameters of the platform components are shown in Table 5.8.

The models were mapped to the ARM nodes of the platform according to
Table 5.9. The mapping of the threads can be modified with a single line of code
in ABSOLUT. Furthermore, altering the partitioning of the algorithms can be done
quickly by modifying the parallelisation specification and then running both MPA
and ABSINTH to generate another set of models.

The execution time of the sequential encoder was about 70 ms (Table 5.10).
The Par-1 and Par-3 versions improved it to about 55 ms, i.e. the partitioning in
Par-3 (Table III) did not bring real benefits compared to Par-1. However, Par-2
provided a speedup of 1.8 with an execution time of 39 ms. All speedups given

www.manaraa.com

5 System Exploration 133

Fig. 5.11 Platform consisting of four ARM nodes

Table 5.8 Platform model
configuration

Component Parameters

ARM 200 MHz clock, writeback cache
SRAM memory 166 MHz clock, 32 Mb
Bus 100 MHz clock
Network IF 100 MHz clock
Router 100 MHz clock

Table 5.9 Mapping of JPEG encoder parallelisations to subsystems

Seq Par-1 Par-2 Par-3

Localthread Node0 Node0 Node0 Node0
Info
Getblock Node1 Node1, Node2 Node1, Node2
DCT
Quantization Node0 Node0
Huffman Node0

by the ABSOLUT approach are lower than the theoretical maximum given by
MPA high-level simulation, which assumes linear scaling and does not take the
communication overhead into account.

Both Par-1 and Par-3 have 100% utilisation on the cpu of the ARM node 0. Par-1
has 44% cpu utilisation in the second ARM node, whereas Par-3 has 21% utilisation
across nodes 1 and 2. Par-2 has 88% utilisation in the first node: it is idling at some

www.manaraa.com

134 J. Kreku and K. Tiensyrjä

Table 5.10 JPEG encoder simulation results

Seq Par-1 Par-2 Par-3

Execution time [ms] 69.5 55.3 38.7 53.9
Speedup 1.00 1.26 1.80 1.29
MPA HLS speedup 1.00 1.66 2.50 1.66
Node0 utilisation ARM 100% 100% 88% 100%

SDRAM 59% 55% 43% 53%
Bus 34% 36% 29% 35%

Node1 utilisation ARM 0% 44% 53% 21%
SDRAM 0% 23% 31% 11%
Bus 0% 12% 18% 6%

Node2 utilisation ARM 0% 0% 53% 21%
SDRAM 0% 0% 31% 11%
Bus 0% 0% 18% 6%

Table 5.11 Power consumption configuration

Power consumption

ARM idle 6 mW
ARM active 0.133 mW / MHz + 5 mW → 31.6 mW
Cache idle 4 mW
Cache active 0.060 mW / MHz + 4 mW → 16 mW
Memory idle 1∗10−6 mW / bit-cell → 32 mW
Memory active 1∗10−6 mW / MB + 6∗10−7 mW / MB → 51.2 mW
Bus 0.03 mW / MHz → 3 mW
Network IF 0.06 mW / MHz → 6 mW
Router 0.037 mW / MHz → 3.7 mW

point of simulation while waiting data from the other two threads. Since Par-2 has a
shorter execution time and more work for nodes 1 and 2, the cpu utilisation in those
nodes is considerably higher at 53%.

The same case study example as above was used for the experimentation of the
power estimation. Parameter values for the power consumption of the components
were obtained from literature and are shown in Table 5.11. The power data for
ARM9 and 16 k instruction and 16 k data caches were adapted from [10] that
describes an experimental SoC design with three power domains, one for the CPU,
one for the caches and one for the rest of the SoC. The ITRS2009 data was
used for the embedded SRAM. The data predicted for 2009 shows static power
dissipation of 1 ∗ 10−6 mW/bit-cell and dynamic power consumption per cell of
6 ∗ 10−7 mW/MHz. The power data for the shared bus was adapted from [21]. For
the Network interfaces, routers and links, power data was adapted from [23].

The power consumption of the system was simulated at the same time as
the performance as the power probes are integral parts of performance probes.
Simulation results for the average power consumption and energy consumption with
the different JPEG parallelisations are listed in Table 5.12. All parallel versions have

www.manaraa.com

5 System Exploration 135

Table 5.12 Power and energy consumption caused by the JPEG
encoders

Sequential Par-1 Par-2 Par-3

Average power 206 mW 228 mW 255 mW 227 mW
Energy 14.3 mJ 12.6 mJ 9.9 mJ 12.2 mJ

a higher average power than the sequential version. However, since the execution
time is shorter, the total energy consumption is lower. The best parallelisation
(Par-2) provides about 30% reduction in total energy consumed.

5.6 Conclusions

This chapter described the ABSOLUT modelling and simulation approach. Firstly,
it gave an outline view of the approach and its evolution. Secondly, it described how
to create different models. Thirdly, it described the means for simulation. Finally, it
walked through an example in order to show how things work in practice.

References

1. L. Benini, A. Bogliolo, and G. DeMicheli. A survey of design techniques for system-level
dynamic power management. IEEE TVSLI, 8(3):299–316, 2000.

2. L. Benini, R. Hodgson, and P. Siegel. System-level power estimation and optimization.
In International Symposium on Low Power Electronics and Design, 1998.

3. M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni, L. Pieralisi, and C. Turchetti. System-
level power analysis methodology applied to the amba ahb bus. In The Design Automation and
Test in Europe (DATE), 2003.

4. E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.-Y. Brunel, W.M. Kruijtzer,
P. Lieverse, and K.A. Vissers. YAPI: Application modeling for signal processing systems.
In 37th Design Automation Conference (DAC), pages 402–405, 2000.

5. N. Dhanwada, I.C. Lin, and V. Narayanan. A power estimation methodology for SystemC
transaction level models. In ACM Proceedings of CODES+ISSS05, pages 142–147, September
2005.

6. K. Flautner, D. Flynn, D. Roberts, and D.I. Patel. IEM926: An energy efficient SoC with
dynamic voltage scaling. In The Design Automation and Test in Europe (DATE), 2004.

7. D. Gajski, J. Zhu, R. Dörner, A. Gerstlauer, and S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, 2000. 313 p.

8. F. Ghenassia, editor. Transaction-Level Modeling with SystemC: TLM Concepts and Applica-
tions for Embedded Systems. Springer, 2005. 271 p.

9. M. Gries. Methods for evaluating and covering the design space during early design develop-
ment. Integration, the VLSI Journal, 38(2):131–183, 2004.

10. S. Idgunji. Case study of a low power MTCMOS based ARM926 SoC: Design, analysis and
test challenges. In IEEE International Test Conference (ITC), pages 1–10, October 2007.

11. R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling. John Wiley & Sons, Inc., 1991. 685 p.

www.manaraa.com

136 J. Kreku and K. Tiensyrjä

12. T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T.D. Hämäläinen, J. Riihimäki,
and K. Kuusilinna. UML-based multi-processor SoC design framework. Transactions on
Embedded Computing Systems, 5(2):281–320, 2006.

13. J. Kreku, M. Eteläperä, and J-P. Soininen. Exploitation of UML 2.0-based platform service
model and SystemC workload simulation in MPEG-4 partitioning. In International Symposium
on System-on-Chip Proceedings, pages 167–170, 2005.

14. J. Kreku, M. Hoppari, T. Kestilä, Y. Qu, J.-P. Soininen, and K. Tiensyrjä. Languages
for Embedded Systems and their Applications, volume 36 of Lecture Notes in Electrical
Engineering, chapter Application Workload and SystemC Platform Modeling for Performance
Evaluation, pages 131–148. Springer, 2009.

15. J. Kreku, M. Hoppari, T. Kestilä, Yang Qu, J.-P. Soininen, P. Andersson, and K. Tiensyrjä.
Combining uml2 application and systemc platform modelling for performance evaluation of
real-time embedded systems. EURASIP Journal on Embedded Systems, 2008.

16. J. Kreku, M. Hoppari, K. Tiensyrjä, and P. Andersson. Systemc workload model generation
from uml for performance simulation. In Forum on Specification and Design Languages, 2007.

17. J. Kreku, T. Kauppi, and J-P. Soininen. Evaluation of platform architecture performance using
abstract instruction-level workload models. In International Symposium on System-on-Chip
Proceedings, pages 43–48, 2004.

18. J. Kreku, J. Penttilä, J. Kangas, and J-P. Soininen. Workload simulation method for evaluation
of application feasibility in a mobile multiprocessor platform. In Proceedings of the Euromicro
Symposium on Digital System Design, pages 532–539, 2004.

19. J. Kreku, Y. Qu, J.-P. Soininen, and K. Tiensyrjä. Layered uml workload and systemc platform
models for performance simulation. In International Forum on Specification and Design
Languages (FDL), pages 223–228, 2006.

20. J. Kreku, K. Tiensyrjä, and G. Vanmeerbeeck. Automatic workload generation for system-
level exploration based on modified gcc compiler. In Design, Automation and Test in Europe
conference and exhibition, March 2010.

21. K. Lahiri and A. Raghunathan. Power analysis of system-level on-chip communication
architectures. In ACM Proceedings of CODES+ISSS04, pages 236–241, September 2004.

22. P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere. A methodology for architecture
exploration of heterogeneous signal processing systems. Kluwer Journal of VLSI Signal
Processing, 29(3):197–207, 2001.

23. P. Liu, B. Xia, C. Xiang, X. Wang, W. Wang, and Q. Yao. A networks-on-chip architecture
design space exploration – the LIB. Computers and Electrical Engineering, (35):817–836,
2009.

24. Micron Technology, Inc. System Power Calculators, 2007. Available at http://micron.com/
support/dram/power calc.html.

25. Micron Technology, Inc. Mobile DRAM Power-Saving Features and Power Calculations, 2009.
Available at http://download.micron.com/pdf/technotes/tn4612.pdf.

26. J.-Y. Mignolet, R. Baert, T.J. Ashby, P. Avasare, Hye-On Jang, and Jae Cheol Son. Mpa:
Parallelizing an application onto a multicore platform made easy. IEEE Micro, 29(3):31–39,
May–June 2009.

27. J. M. Paul, D. E. Thomas, and A. S. Cassidy. High-level modeling and simulation of single-
chip programmable heterogeneous multiprocessors. ACM Transactions on Design Automation
of Electronic Systems, 10(3):431–461, July 2005.

28. A. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Transactions on Computers, 55(2):99–112,
2006.

29. H. Posadas, F. Herrera, P. Sánchez, E. Villar, and F. Blasco. System-level performance analysis
in SystemC. In Proceedings of the Design Automation and Test in Europe Conference, Paris,
France, February 2004.

http://micron.com/support/dram/power_calc.html
http://micron.com/support/dram/power_calc.html
http://download.micron.com/pdf/technotes/tn4612.pdf

www.manaraa.com

5 System Exploration 137

30. S. Thoziyoor, N. Muralimanohar, and N.P. Jouppi. CACTI 5.0. HP Laboratories, 2007.
Technical report HPL-2007-167.

31. T. Wild, A. Herkersdorf, and G.-Y. Lee. TAPES — trace-based architecture performance
evaluation with SystemC. Design Automation for Embedded Systems, 10(2–3):157–179, 2006.
Special Issue on SystemC-based System Modeling, Verification and Synthesis.

www.manaraa.com

Chapter 6
MPA: Parallelization Made Easy

Geert Vanmeerbeeck and Thomas J. Ashby

Abstract This chapter of the book covers the work performed on IMEC’s
parallelization tool called MPA. The work done on this tool in the context of
the MOSART Project involved several extensions to an already existing baseline
version of the MPA tool. In this section we will give an introduction to the entire
MPA parallelization tool, and briefly compare our approach to some of the existing
alternatives for doing application parallelization. All developed extension in the
context of this project will also be explained in more detail. Finally we will conclude
this book chapter with a simple example to illustrate the most interesting features of
IMEC’s parallelization tool.

6.1 Parallelization with the MPA Tool

The general idea of the MPA tool is that the designer identifies parts of the sequential
code that are heavily executed and should be executed by multiple threads in parallel
to improve the performance of the application. These pieces of code that will be
parallelized are called parsections.

For each parsection, the designer specifies how many threads must execute it and
what part each of these threads must execute. The designer can divide the work over
threads in terms of functionality, in terms of loop iterations, or a combination of
both depending on what is the most appropriate for a given parsection.

These parallelization directives have to be written in a file provided to the MPA
tool. The main reason for using directives in a separate file instead of pragmas
inserted in the input code, is that it simplifies exploration (and retaining) of multiple
parallelizations for the same sequential code.

G. Vanmeerbeeck (�) • T.J. Ashby
IMEC Belgium, Kapeldreef 75, B-3001 Leuven, Belgium
e-mail: vanmeerb@imec.be; ashby@imec.be

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 6,
© Springer Science+Business Media, LLC 2012

139

vanmeerb@imec.be;
ashby@imec.be

www.manaraa.com

140 G. Vanmeerbeeck and T.J. Ashby

Fig. 6.1 Overview of the MPA tool-flow

Given the input code and the parallelization directives, the tool will generate
a parallel version of the code and insert FIFOs and synchronization mechanisms
where needed (see Fig. 6.1).

Hence, the designer doesn’t have to worry about dependencies between threads,
etc. This is all taken care of automatically by the tool. However, as designers like to
be in control, the MPA tool provides the optional mechanisms of shared and private
variables. By specifying a variable as being shared or private, the designer explicitly
tells the tool that it does not have to add synchronization and communication
mechanisms for that variable, because he (=the designer) will take care of that
himself (or they are unneeded).

The current version of the MPA tool is the scalar version, meaning that it can
handle scalars but also arrays (and structs). However, arrays are treated as opaque
objects or as “big scalars”. If a thread writes to one (or more) element of an array,
and another thread (potentially) reads one (or more) element of the array, the whole
array will be communicated between the two threads even if the element being read
is different from the element being written.

www.manaraa.com

6 MPA: Parallelization Made Easy 141

Future work could be to make the tool more intelligent and also analyze which
elements or part(s) of the array are being read and/or written. This could potentially
save large amount of (unnecessary) data traffic. In our experience however we found
this limitation not a big problem. We let the MPA tool handle all (smaller) temporary
arrays, while we mark the bigger arrays as shared variables. This way we can
manage that part of the data traffic by ourselves.

6.1.1 MPA and RTlib: The API

The build-in code generator inside the MPA tool is using a documented yet generic
API to separate the parallelized application code from the implementation of
platform services related to configuration, communication, synchronization and
parallel computing (threads and/or processes).

The implementation of this API for a specific platform or operating system is
further called the MPSoC Run Time Library (or RTLib).

This generic set of functions was chosen over a specific implementation to avoid
any kind of restrictions with respect to the implementation of any of the required
functionality. For example, if the code generator would use a common multi-thread
implementation like POSIX threads, the MPA tool could not be used with platforms
using Quick-Threads or platforms with other specific micro-kernels.

Hence we have chosen to use a non-standard API for the link between parallel
code and platform services. However, as a reference implementation we are also
providing an implementation of our generic API on top of the well known POSIX
library.

Without going into too much details of this API, there are four main groups of
API functions:

• Configuration: this group includes all the mps config XXX() functions,where
XXX = component, memory, thread, source fifo, target fifo

• Communication: this group includes the mps fifo put XXX() functions, the
mps fifo get XXX() functions, and the mps open connection()

• Synchronization: this group includes all the mps loop sync XXX() func-
tions, where XXX = init, post, wait or delete

• Parallel computing: this group includes all the mps master XXX() functions
and all the mps slave XXX() functions. These functions are used to spawn
and join parallel threads (or processes) onto your system, and pass a number of
configuration parameters onto them.

The resulting parallelized code, generated by the MPA tool, must be compiled
and linked with any version of the RTLib. Here there are two options: either the
user wants to do a high level functional simulation of the parallelized code on
his development workstation, or he wants to compile the code for a real MPSoC
platform (or MPSoC platform simulator). In the first case, the user can link the code

www.manaraa.com

142 G. Vanmeerbeeck and T.J. Ashby

with the functional version of the MPSoC RTLib which comes together with the
MPA tool itself. In the other case, the user has to link the code with a platform
specific version of the MPSoC RTLib. As mentioned above, the MPA tool comes
with an example implementation of the RTLib API build on top of POSIX threads
and semaphores. This allows the user to compile and run his parallel application on
any Linux OS based system.

6.1.2 MPA and First Order Performance Estimation

The MPA tool also comes with a high-level performance gain estimation approach
for your applications. This performance gain estimation is based upon timing
annotation of kernels. A kernel is supposed to be a compute intensive part of the
application that does not include any communication and/or synchronization (i.e.
an FFT calculation kernel). The approach taken here is to assign execution times
to these compute intensive parts of the application (these can be measured from
the sequential execution), and annotate these timings during the parallel execution
of the application. Upon completion a report is generated with performance details
about all the parallel treads involved, the usage of the FIFO communication channels
and other synchronization mechanism. Also a global comparison is done to the
sequential execution of the application.

For this high-level performance estimation MPA also comes with a tool that
allows to automatically insert ARP calls. ARP stands for “ATOMIUM1 Record
an Playback”. All function calls for the ARP API start with an arp pre-
fix. ARP calls are inserted into the application code to indicate both the start
(arp enter kernel()) and end (arp leave kernel()) of kernels. The
arguments to these functions are thread and kernel identifiers to keep track of them
in a timing database.

This timing database can be obtained by running the application while using the
ARP API in Record mode. In this mode timing information is gathered throughout
the execution of the application and is written in a specific format to a file. This file
(database) can then be used in Playback mode to annotate the kernels present inside
the application.

Note here that the usage of the ARP API is orthogonal to the use of the MPA
tool. It is handy for getting early estimations about possible parallel solutions for
your application, but it is not required at all. In fact MPA can be used without
ARP altogether. Performance analysis of your parallelizations will then have to be
evaluated in a different way, however (i.e. platform simulators or emulators).

1ATOMIUM is a framework developed at IMEC that consists out of multiple tools including
ATOMIUM/MPA. The framework offers C-based source code parsing and analysis capabilities.
Other tools within the ATOMIUM framework include an analysis, instrumentation, profiling and
memory array usage tool (ATOMIUM Analysis), a tool for doing scratch-pad management or large
arrays (ATOMIUM/MH) and a memory footprint reduction tool (ATOMIUM/MC),

www.manaraa.com

6 MPA: Parallelization Made Easy 143

6.2 Related Work

6.2.1 Parallelization

There has also been much work on parallelization, whether automatic, aided or
largely manual. Our work differs from the standard approaches ([5, 6, 12, 15]) in
that the tool is responsible for handling dependencies rather than the programmer,
and the emphasis is on being able to rapidly create multiple machine specific
parallelizations. Whilst our approach is more ambitious than those widely used
tools, MPA is less ambitious than other work in the academic literature in that it
isn’t fully automatic; however, it is very usable and fills in an important part of the
puzzle for semi-automatic parallelization that can target both functional and data
parallelism.

Some recent work that is similar to ours in that they target functional parallelism
and uses techniques similar to the geometric model includes [1, 10, 13]; however,
they seem to only target array dependencies and attempt to do the whole process
automatically. Work that seems closer to our approach in terms of the type of
dependencies targeted and the embedded focus is [3, 8]; however, they don’t
mention how they handle array dependencies, and they aim for full atomisation. An
alternative to static analysis to recover dependencies is dynamic analysis; examples
of applying this to functional parallelism include [9, 16]. A key problem with those
approaches though is the reliability of the dependence information and how to map
it to communication channels in source code when the analysis is done at the binary
level.

The geometric model we use is similar to the polyhedral model used for
parallelization in work such as [17] (and the other work they reference), but our
end goal is different (mostly checking) and the failure to extract a geometric model
for a piece of code doesn’t prevent the tool from being useful. Although we do not
handle symbolic expressions in the way the polyhedral model can, we also do not
suffer the complexity penalty on generated code. Also, that work implicitly implies
a shared memory target due to the lack of explicit introduction of communication.

6.2.2 Dataflow Models

The result of a parallelization using MPA could be viewed as a form of dataflow
model. There are many dataflow models of computation reported in the literature
(for one overview, see [11]), and previous work has reported interesting results
on sizing communication channels for instances of such models (see [14]) as well
as safety checks such as deadlock detection. However, there are several important
differences between using MPA and the approach assumed in the dataflow literature
that prevents these techniques being directly reused.

www.manaraa.com

144 G. Vanmeerbeeck and T.J. Ashby

6.2.3 Deadlock

Firstly, MPA-parallelized programs are derived from sequential programs rather
than directly constructed. Consequently, parallelisations with unsized FIFOs that do
not use loop syncs cannot deadlock during parallel execution2 as MPA only inserts
synchronisation to enforce dependencies present in the original sequential program,
which itself is deadlock free by definition. Secondly, using dataflow models to check
loop syncs is not easy as the parallelised programs cannot easily be translated into
the models due to conditionals, data dependent execution times, loop nesting etc.,
even for more expressive versions such as cyclostatic dataflow [2].

6.3 MPA Extensions for MOSART

In this section all the extensions developed for MPA in the context of the MOSART
Project are explained.

6.3.1 MPA Baseline

At the start of the MOSART project, IMEC already had a (research) tool called
SPRINT for doing application parallelizations [4]. This tool however was limited to
functional parallelism.

Due to restrictions in the underlying implementation of the tool, it would have
been very hard to implement all the extension promised within the MOSART design
flow at the start of the project. Mainly here the promise of offering some kind of
data-level parallelism would prove to be a very tough case.

For this reason IMEC has chosen to re-implement the functionality already
offered by the SPRINT tool onto an existing framework for doing analysis and
transformations related to memory accesses. These are also known as Data Transfer
and Storage Exploration (DTSE) transformations [7].

This proven framework, known as the ATOMIUM framework, already contained
the required basic functionality (like abstract syntax tree generation and variable
lifetime analysis) for re-implementing the baseline functionality offered by the
SPRINT tool. Additionally, the availability of proven technology for doing memory
access analysis, would enable the implementation of all the promised parallelization
extensions.

As a result, the re-implementation of SPRINT within the ATOMIUM framework
resulted in a new tool name: MPA, which stands for “MPSoC Parallelization Assist”.

2Assuming the tool processes the code correctly.

www.manaraa.com

6 MPA: Parallelization Made Easy 145

6.3.2 Simulation, Visualization and Kernel Annotation

A first extension developed for the MPA tool is visualization. This visualization
depicts the parallelized application’s internal structure. It does this by showing all
the loops, functions and threads present in the output code and how they are nested.
It also shows where the FIFO accesses are performed, relative to loops, functions
and threads.

If more then one parallel section is indicated to the MPA tool, it will generate
separate views for every parallel section as well. This is done because for larger
applications the overall application view rapidly becomes too large and too complex.
On these separate visualizations every thread can be identified, all the communicat-
ing FIFO queues, and also all the configuration variables (read only) and shared
variables.

The output of the visualization is two graph descriptions per parallel subsection,
in dot file format that can be displayed by a suitable dot viewer, with the graphs
representing either a detailed or high level view of the inserted communication
channels (example in Fig. 6.4). This summary of the parallel thread structure and
relationships cannot, by definition, incorporate runtime information, and as such
does not present the designer with a complete view on what the parallel performance
of the application will be like.

To supplement the static view of a mapping, we have implemented a form
of dynamic trace generation based on a profiling framework. The ATOMIUM

framework, on which MPA is based, has been extended to generate source code
level instrumentation of files. In the initial phase, the designer identifies source code
constructs (i.e. lines or blocks) of interest with a specific style of label. These labeled
elements are termed kernels. A kernel is usually a relatively small, time intensive
piece of code. Kernels cannot be nested. After labeling, a tool processes the code to
produce the instrumented version. An abridged example of the input and output are
given in Fig. 6.2.

As well as the individual kernels themselves, it can be seen that the tool is
inserting instrumentation to keep track of the invocation context of a particular
execution of a kernel, thus allowing the individual samples to be faithfully replayed.
The entry and exit of a kernel also use callbacks supplied by the designer to
collect timestamps from the platform on which the instrumented code is being
executed, and it is these timestamps in combination with the context information
that constitute the profile.

The MPA release package includes a pthread based implementation of the RTLib
that will run on a standard workstation, thus providing a functional parallel platform
simulator that can be used to check the correctness of parallelized code. Feedback
on the potential parallel performance of a given mapping is generated as an addition
to this functional simulator. Once a sequential source code has been instrumented,
the instrumented version can be parallelized, and the instrumentation is changed to
read an existing profile (generated by running the instrumented sequential version)
and record events such as kernel execution in a parallel trace, in wave format. This

www.manaraa.com

146 G. Vanmeerbeeck and T.J. Ashby

foo() {

ato_kernel_1:{
for (i = 0; i<DIM; ++i){

r += a[i][i];
}

}
}

main() {

foo();

}

foo() {
arp_enter_kernel(1, 1, 0);
ato_kernel_1:{

for (i = 0; i<DIM; ++i){
r += a[i][i];

}
arp_leave_kernel(1, 1);

}
}

main() {
arp_enter(1, 2, 0);
foo();
arp_leave(1, 2);

}

Fig. 6.2 Example input code and (most of) the result of kernel profiling instrumentation, showing
kernel boundaries around the labeled block and subsection boundaries around the function call
containing the kernel

trace is then displayed using a waveform file viewer (i.e. Modelsim or GTK-Wave).
An example of the output is given in Fig. 6.3.

As the trace is based on a full dynamic execution of the parallelized code, it
incorporates all the dynamic behavior of the application for that input set. As such
it provides a valuable complement to the existing static information. Also, as the
parallel trace is created using timestamps that are pre-collected, the time taken
to create the parallel trace is only slightly longer than that required to execute
a functional simulation, which is typically fast when executed on a powerful
workstation. This can be contrasted with doing a full simulation of the execution
of the parallel code on a model of the platform, which may take far longer.

6.3.3 Data Level Parallelism

The idea of data level parallelism is to distribute the computing based upon certain
data structures over multiple (parallel) threads (or processors). However, the fact
that multiple threads are accessing the same data structures can potentially lead to
serious errors like data overwriting.

In the MPA tool we have implemented a way to assign contiguous iteration sub-
ranges to different threads. This distribution of loop iterations however will not in
any way change the order in which the iterations will be executed. Moreover, if
arrays are used in the inner-loop part, MPA will generate a communication and
synchronization mechanism to ensure the correctness of the execution. Remember
that the current tool version of MPA is scalar based. This means that the entire array
will be passed through the FIFO every time.

www.manaraa.com

6 MPA: Parallelization Made Easy 147

F
ig

.6
.3

V
is

ua
li

za
ti

on
of

ti
m

in
g

tr
ac

e
ou

tp
ut

fr
om

hi
gh

-l
ev

el
si

m
ul

at
or

.T
he

tr
ac

e
sh

ow
s

th
re

ad
ac

tiv
it

y,
ke

rn
el

ex
ec

ut
io

n
an

d
FI

FO
oc

cu
pa

nc
y

ov
er

ti
m

e

www.manaraa.com

148 G. Vanmeerbeeck and T.J. Ashby

Func main

P0 example_parsection

T1 left

Loop outer: from 0 to 5

Func T1_computeKernel

Loop iters

Loop i

Loop j

Func T1_computeKernel_1

Loop iters

Loop i

Loop j

T2 right

Loop outer: from 5 to 10

Func T2_computeKernel

Loop iters

Loop i

Loop j

Func T2_computeKernel_1

Loop iters

Loop i

Loop j

T3 carry

Loop outer

put FIFO 2

get FIFO 0 put FIFO 0
carry

T1 IN

get FIFO 2

sum

final get FIFO 1

get FIFO 1

put FIFO 1

carry

T2 OUT

P0 OUT

OUT:
sum

carry

T3 IN

init put FIFO 0

carry

P0 IN

IN:
sum

IN:
carry

Fig. 6.4 Graphical of internal application structures

www.manaraa.com

6 MPA: Parallelization Made Easy 149

PAR:{
for (j = 0; j < 10; ++j) {
L1: {

B[j] = A[j] + B[j-1];
}

}
}

thread T1a:
looprange iterator j from 0 to 5
include label L1

thread T1b:
looprange iterator j from 5 to 10
include label L1

Fig. 6.5 Example input code and accompanying parallelization directives for a data-level split of
a for-loop using the loopsync extension

However, in a lot of cases arrays are used only as input data. In a lot of these cases
the designer can improve the overall result of the data level parallelism by explicitly
marking these arrays as shared. For shared variables MPA will not introduce any
communication or synchronization primitives.

Another way of improving the overall performance of data level parallelism
with the MPA tool is to introduce so-called loopsyncs. This is an advanced
loop synchronization mechanisms to relax the synchronization of distributed loop
iterations. The loopsync mechanism is also one of the extension implemented within
the context of the MOSART Project and will be discussed later in this chapter.

The example in Fig. 6.5 is a simple split of the original loop range into two
halves, with each half being assigned to one thread. In the case of no dependencies
across iterations, the loop structure is copied to all threads, with the copies being
adapted to have suitably modified iteration ranges. In the case of cross iteration
dependencies, there must be a data-split FIFO to satisfy the dependency from the
last iteration of a given sub-range to the first iteration of the next. In the generated
code (see Fig. 6.6), this is placed after the loop for the preceding sub-range, and
before the loop corresponding to the following sub-range. Note that the FIFOs are
outside the loop bodies.

The analysis required to insert data-split FIFOs is based on looking for loop
carried dependencies. These are represented in the Factored Use-Def model (FUD)3

as dependencies from definitions within the loop back to the mu-def associated with
the loop header. Whenever such a dependency exists, there must be a corresponding
data-split FIFO, and if there is no such dependency then a data-split FIFO is not
required. This analysis is enough to ensure safety for non-shared variables.

6.3.4 Advanced Scalar Dependency Analysis

The implementation of this extension in MPA does a relatively direct analysis of the
dependencies between the partitioned sections of code. Such a direct interpretation

3Factored Use and Definition chains, or FUD chains, is a data-flow analysis technique often used
in compilers for detecting and representing variable dependencies.

www.manaraa.com

150 G. Vanmeerbeeck and T.J. Ashby

/* Thread 1 (T1a), remote thread of parsection 1: */
void T1_T1a(mps_tid_t master, mps_tid_t slave)
{

...
mps_slave_start(0, 1);

for (j = 0; j < 5; ++j) {
L1: {
B[j] = A[j] + B[j - 1];

}
}

mps_fifo_put_data(0, B); /* DS fifo 0: put T1->T2 (B) */

mps_slave_end(0, 1);
}

/* Thread 2 (T1b), remote thread of parsection 1: */
void T2_T1b(mps_tid_t master, mps_tid_t slave)
{

...
mps_slave_start(0, 2);

mps_fifo_get_data(0, B); /* DS fifo 0: get T1->T2 (B) */

for (j = 5; j < 10; ++j) {
L1: {
B[j] = A[j] + B[j - 1];

}
}

mps_slave_end(0, 2);
}

Fig. 6.6 MPA Generated code for a simple data-split

can lead to unnecessary sequentialisation of threads that can be avoided by doing a
more detailed analysis of the relationship between the different uses and definitions
of the variable. In particular, we use an advanced scalar dependency analysis to
locate and exploit reduction chains.

A reduction chain is a chain of variable updates with an associative and
commutative operator. For example, the calculation of a sum variable by means
of sum = sum + something. If only the end value of the reduction chain is used,
and the intermediate values are only used in the update operation to calculate the
next value, then the order of computations can be changed. This can be used to
relax the otherwise sequential dependencies between the operations. For instance, if
the sum variable is computed over several threads, we can compute a partial sum in
each thread and send them to a central point where they will be summed together to
form the total sum. This allows the threads to run in parallel instead of sequentially.
The main use of this is to break what would otherwise be circular dependencies
in reductions (such as summations) calculated in loops, where the value of the

www.manaraa.com

6 MPA: Parallelization Made Easy 151

Fig. 6.7 An example of a reduction chain in a piece of pseudo code, alongside the part of the FUD
model dealing with the x variable

computed reduction is used after the loop. An example of such a construct and
the relevant fraction of its associated Factored Use-Def (FUD) model is given in
Fig. 6.7.

The analysis for reduction chains is done on-demand during the creation of the
abstract FIFO model that captures the information about which dependencies will
result in communication in the mapped version of the code. If the analysis finds a
reduction chain then the FIFO model is not created, but rather a reduction chain
object is made and attached to the parts of the FUD model that it relates to. This is
used later in the flow of the tool to create the actual FIFO communication channels
that will be implemented.

The analysis of the reduction chains is base on pattern matching and analysis of
the FUD model. The FUD analysis consists of looking for a reduction chain section,
where the following uses are only used in defining the same variable (which is the
next def in the chain). The pattern matching part is in the analysis of the abstract
syntax tree the accepted patterns are certain forms of update statement that link the
use nodes to the def node. If a reduction chain section is found, then the tool checks
for possible extension of the chain in both directions. This can lead to reduction
chains that span several threads and therefore offer an even better improvement of
parallelism.

Reduction chains have been implemented for mixed addition and subtraction
chains, multiplication chains and min/max chains, giving a wide coverage of
different operators. The chains are limited to directly manipulated single variables;
variables accessed through pointers and reduction chains that span multiple vari-
ables will not be analyzed.

6.3.5 Loop Sync

The loopsync is a means for a designer to relax the synchronization constraints for
a given application to the MPA tool.

The basic idea behind the loopsync is to specify synchronization in terms of
the executed iterations of the loop bodies that are being synchronized. A loopsync

www.manaraa.com

152 G. Vanmeerbeeck and T.J. Ashby

PAR:{
for (j = 1; j < 9; ++j) {
L1: {

B[j] = 138/2;
s = 3;

}
L2: {

A[j+1] = B[j] + s;
}
L3: {

C[j] += A[j-1] * 42;
}

}
}

Original sequential code

sharedvar varname A, B
thread T1:

include label L1
include label L3

thread T2a:
looprange iterator j from 1 to 5
include label L2

thread T2b:
looprange iterator j from 5 to 9
include label L2

loopsync LS1:
threadloop T1 iterator j skew 0
threadloop T2a iterator j skew 1
threadloop T2b iterator j skew 1

Parallelization Specification

Fig. 6.8 A section of code and a parallelization specification for it, including loop syncs

specifies the allowable relative positions of two (or more) threads whilst executing
the synchronized loops. Consider the example split in Fig. 6.8. Given that array B
is shared, the user has specified a loopsync to protect the shared accesses, where
threads T2a and T2b must trail thread T1 by exactly one loop iteration. Note that
this loop sync is not semantically correct as it will lead to incorrect use of array A.
the example is constructed this was so that it can also be used later to discuss loop
sync checking.

The specification of loop syncs is formulated to make them compact when
writing synchronization for multiple threads. Each loop sync in effect specifies
pairwise two-sided dependencies between all of the synchronized threads. A two-
sided dependency means that both the maximum progress of the first thread with
respect to the second and vice-versa is specified. For loop sync LS1 in the example,
this equates to a flow dependency (thread T1 must have finished executing iteration
i before T2 can begin iteration i) and an anti-dependency (thread T2 must have
finished executing iteration i before T1 can begin executing iteration i + 2), although
in general both dependencies may be anti-dependencies depending on how the
allowable overlap is specified in the loop sync.

In the original sequential code, each execution of a given loop body can be
numbered from 0 to N – 1 where N is the number of executed iterations, also
known as the trip count. In order to distinguish different dynamic executions of
the loop itself when it is contained in other loops, nested loop iterations can
be identified by a vector of values with the number of dimensions equaling the
loop nesting depth. These vectors can be uniquely mapped onto machine integers
provided the range at any nesting depth is within some reasonable limit. This
labeling of iterations is the basis for implementing loop syncs. Each thread has
a loop sync counter that it updates each time just before it starts executing the
body of a loop that is synchronized. The value used is the one calculated from

www.manaraa.com

6 MPA: Parallelization Made Easy 153

unsigned int mpa_lv1_curr_L1;

mpa_lv1_curr_L1 =

MPA_PS1_T1_START_L1_LOOP_ITERATOR_j;

for (j = 1; j < 9; ++j) {

mpa_lv1_curr_L1 += MPA_PS1_L1_BASE;

mps_loop_sync_post(0, 0, mpa_lv1_curr_L1,

MPA_PS1_LS0_T1_MAXSKEW_L1_LOOP_ITERATOR_j);

mps_loop_sync_wait(0, 0, mpa_lv1_curr_L1,

MPA_PS1_T1_MINSKEW_L1_LOOP_ITERATOR_j);

L1: {

B[j] = 138 / 2;

s = 3;

if (j < 5) {

mps_fifo_put_int(0, s);

}

if (j >= 5) {

mps_fifo_put_int(1, s);

}

}

L3:{

C[j] += A[j - 1] * 42;

}

}

mpa_lv1_curr_L1 =

MPA_PS1_T1_END_L1_LOOP_ITERATOR_j;

mps_loop_sync_post(0, 0, mpa_lv1_curr_L1,

MPA_PS1_LS0_T1_MAXSKEW_L1_LOOP_ITERATOR_j_1);

mps_loop_sync_post(0, 0, 0xFFFFFFF, 0);

Generated code for thread T1

unsigned int mpa_lv1_curr_L1;

mpa_lv1_curr_L1 =

MPA_PS1_T2_START_L1_LOOP_ITERATOR_j + 0 * 1;

for (j = 1; j < 5; ++j) {

mpa_lv1_curr_L1 += MPA_PS1_L1_BASE_1;

mps_loop_sync_post(0, 1, mpa_lv1_curr_L1,

MPA_PS1_LS0_T2_MAXSKEW_L1_LOOP_ITERATOR_j);

mps_loop_sync_wait(0, 1, mpa_lv1_curr_L1,

MPA_PS1_T2_MINSKEW_L1_LOOP_ITERATOR_j);

L1: {

s = mps_fifo_get_int(0);

}

L2:{

A[j + 1] = B[j] + s;

}

}

mpa_lv1_curr_L1 =

MPA_PS1_T2_END_L1_LOOP_ITERATOR_j;

mps_loop_sync_post(0, 1, mpa_lv1_curr_L1,

MPA_PS1_LS0_T2_MAXSKEW_L1_LOOP_ITERATOR_j_1);

mps_loop_sync_post(0, 1, 0xFFFFFFF, 0);

Generated code for thread T2

Fig. 6.9 Generated code for two of the threads from Fig. 6.8

the sequential code by mapping all the iterations to integers. In this way each
thread being synchronized can broadcast its progress to the other threads by posting
its current loop sync counter value (after updating it but before beginning the
execution of the loop body). A thread meets its synchronization constraints by
executing a wait immediately after the post. The wait command blocks until the
other threads have progressed sufficiently for it to release, as determined by the
minimum skew of the waiting thread and the maximum skew of the other threads.
As loop synchronization constraints act on loop trip counts, they are expressed in
terms of trip count distances. The resulting code for the example in Fig. 6.8 is given
in Fig. 6.9.

In order to calculate the mapping of iterations in the original code to integers,
the total iteration ranges of each individual loop in a nest are extracted from the
sequential code by analyzing loop control expressions. The number of bits required
to represent that range is then calculated, and the maximum bit range for all loops
at a given loop nesting level is recorded. The size of the loop sync counter variable
is then the concatenation of these maximum bit ranges. In the case that such a range
size cannot be calculated from the control expressions, the tool signals an error to
be corrected by the user.

www.manaraa.com

154 G. Vanmeerbeeck and T.J. Ashby

POST

WAIT

 BODY

POST

WAIT

 BODY

POST

WAIT

 BODY

<1> <−1> <5>

<−6> <6>

<−5>

<−5>

Thread T1 Thread T2bThread T2a

Fig. 6.10 Constraint model for the code and mapping in Fig. 6.8. Nodes are events, edges are
dependencies. Dependence distances (in iterations) are annotated to edges as vectors except when
(a) the distance is zero (in which case the annotation is omitted) or (b) the edge is a loop iteration
back edge (in dashes) for which the distance is always 1

6.3.6 Loop Sync Deadlock Detection

Deadlock detection was investigated as one of the possible extensions of MPA as
part of the MOSART project. Although there was considerable progress on how to
model the problem, the extraction of answers from the model proved to be difficult.
The modeling of FIFOs and how they relate to deadlock was also investigated.

The constraints imposed by loop syncs are modeled internally in MPA by
representing each synchronized loop in the program as an iterated sequence of three
events: post, wait and body. The ordering of these events is represented in a graph
with directed edges to denote precedence. Each edge is labeled with a vector to
denote the minimum distance (i.e. number of loop iterations) that the dependence
is valid for, being the tightest synchronization constraint that it can represent. For
example, the constraint model for Fig. 6.8 is shown in Fig. 6.10. The edge from the
body node to the post node represents iteration in the loop. The edge from the first
body node to the second indicates the dependence due to the FIFO from thread T1
to T2 to communicate variable s.

Let us consider what will happen if the user now adds a second loop sync to
protect accesses to shared array A, with the following form:

loopsync LS2:
threadloop T1 iterator j skew 1
threadloop T2a iterator j skew 0
threadloop T2b iterator j skew 0

The constraints become mutually inconsistent as T2 cannot also be ahead of T1
by exactly one iteration. The model can be checked for this by searching paths from
a node back to itself where the values on the path sum to a lexically negative or

www.manaraa.com

6 MPA: Parallelization Made Easy 155

POST

WAIT

BODY

POST

WAIT WAIT

Thread T1 Thread T2bThread T2a

<−1> <1> <5> <−5>

<−4> <4>

<−5>
BODY BODY

POST

Fig. 6.11 Constraint graph resulting from the second loopsync, with the first loopsync omitted for
clarity. One of the paths showing that the loopsync is illegal is highlighted in red

zero vector. This implies that a particular instance of an event must occur before
or simultaneously with a previous instance, which indicates an illegal graph and
therefore inconsistent constraints. As well as covering dependencies between loop
syncs, the technique will also show when a loopsync violates the flow dependencies
that arise from dependencies across threads due to the partitioning (that will result
in FIFOs). For instance, even without loop sync LS1 in Fig. 6.8, LS2 is illegal as it
contradicts the FIFO inserted for variable s. An example of such a path can be seen
in the constraint model in Fig. 6.11.

Nested loops are modeled by associating a body node with the graphs of any
loops nested in it. These nested models are then used to calculate a dependency
between body nodes in the parent graph by summarizing the dependencies in all
nested loops. Data splits at a given loop level require a further refinement of how the
model is constructed. FIFO dependencies between functional splits should only be
inserted between loops whose sub ranges actually overlap (and hence actually need
a FIFO), but the distances of these and loop sync dependencies remain unchanged.
Loop carried FIFOs in a loop split that result in a FIFO from after the loop for the
first sub range to before the loop for the second sub range (loop split FIFOs) are
modeled in the parent loop as a FIFO with distance 0.

The specification, modeling and checking of loop syncs for loop split sub ranges
that do not overlap is done on the basis of treating the loop sync as if the iteration sub
ranges were extended such that they would overlap. This has several consequences.
The first is that loop syncs for non-overlapping sub ranges are implemented slightly
differently from the non loop-split case. As loop syncs are interpreted as if for
extended overlapping iteration ranges, a loop sync constraint with skew 0 for two
threads with abutting loop sub ranges results in sequential execution. To specify via
a loop sync that two non-overlapping sub ranges must be executed simultaneously,
the latter sub range must be shifted forwards (with negative skew) relative to the
former. The second is that the checking can give a warning for a set of loop syncs
that are not in practice directly conflicting. However, we consider it more important
to maintain semantic consistency than to allow such corner cases.

www.manaraa.com

156 G. Vanmeerbeeck and T.J. Ashby

The constraint graph is simplified before searching to minimize the number
of edges, then search is performed using standard graph algorithms. Search is
performed per loop nesting level, starting from the bottom upwards. Due to time
limits, we only had the chance to explore the use of relatively unsophisticated graph
search algorithms. On the sizes of graphs that we encountered, these proved to be
unacceptably inefficient. The rationalization of the model and/or the use of more
sophisticated algorithms to make full checking feasible is left as future work.

6.3.7 FIFO Sizing

Unsized FIFOs give rise to uni-directional synchronization in the parallel code, by
design, to enforce dependencies. However, relying on unlimited FIFO storage for
an actual platform has the disadvantage of potentially unpredictable behavior or
even failure of the program due to resource overuse. As such, MPA should give
sizes to the FIFO objects that it inserts where possible. Sized FIFOs also introduce
synchronization in the opposite direction though (put will block when the FIFO is
full), so we should ensure that the sizes we assign are at least safe, in that they don’t
introduce deadlock in the parallel program, and if possible efficient, in that they
represent an appropriate trade-off of space for parallelism.

Individual FIFO sizing could be based on the same constraint model as loop
sync (and FIFO constraint) checking, by looking for minimum legal values rather
than checking for inconsistent existing values. However, this brings with it the
same problems as encountered in loop sync checking, as the same information
about implied constraints needs to be extracted from the model. Hence we chose
to implement a global assignment of FIFO size through a parameter set by the
designer. This has the advantage of not requiring any expensive analysis and
having a conceptual uniformity. Further investigation into individual FIFO sizing
is future work.

6.4 MPA by Example

In this section we will take a small example through IMEC’s MPA tool to illustrate
the tool flow and some of the capabilities of our approach.

6.4.1 The Example

In Fig. 6.12 you can find the (simplified) input source code that we will be using
throughout this example section.

Note that the input sources have been manually annotated (once) with so-called
block-labels (see lines 7, 11, 15 and 19 in Fig. 6.12). Annotating sources with block-

www.manaraa.com

6 MPA: Parallelization Made Easy 157

4 int main(int argc, char** argv)
5 {
6 int outer;
7 float sum = 0, tmp;
8 float carry = 1.2;
9

10 parsection1:{
11

12 for (outer = 0; outer < 10; outer++) {
13

14 store in temp:{
15 tmp = computeKernel(carry);
16 }
17

18 compute carry:{
19 carry = carry + 0.001;
20 }
21

22 calc sum:{
23 sum += computeKernel(tmp);
24 }
25 }
26 }
27

28 printf ("%f\n", sum);
29

30 return 0;
31 }

Fig. 6.12 The example source code

labels do not introduce performance penalties. It is required by the tool that all code
within a parsection is within the boundaries of (at least one) a block-label. The
parallelization will be specified by stating which blocks should be executed where
(inside which thread), however there is no default assignment and hence code not
within the boundaries of a block-label cannot be assigned to a thread (resulting in a
tool error).

6.4.2 Trivial: Everything in One Thread

To start we will use to tool to generate a trivial example: put all the code inside the
parsection in one single thread. This will (almost) result in the original application.
However this way we can analyze the resulting code, and for the other upcoming
examples, we can compare the results to this one.

www.manaraa.com

158 G. Vanmeerbeeck and T.J. Ashby

Here is the parallelization specification:

processor P1

parsection trivial_parsection:

parsecblock label main::parsection1

thread all:
include label store_in_temp
include label compute_carry
include label calc_sum

This specification is located in a separate file and will be passed as an argument
to the tool when we perform the actual parallel code generation.

From this simple parallelization specification, it is clear that we declare one
single thread (named all) that spans all the (block-) labels present in the application.
As a result we expect to see one Master thread and one Slave thread. The Master
thread is always present, it is this thread that starts up the application and runs all
the code before and after the parsection. It is also the Master thread that spawns and
activates all the slave threads at the start of the parsection, and that waits for all slave
threads to have finished at the end of the parsection. Slave threads are spawned and
activated by the Master thread and execute (parts of) code that is located within a
parsection.

When running the MPA tool, the internal structure and dependencies of the
generated parallelization can be analyzed graphically. The plot in Fig. 6.13 is
generated by MPA inside the output directory specified as a dotty graph (see www.
graphviz.org for details). From this graph you can see the functions at hand, the
nesting of all the loops and all the configuration and communication present in
the resulting code. Also the boundaries for the parsection and for all the generated
threads are made visible in this graph.

6.4.3 First Functional Split

Next, we will create our first real parallel version for this example. We will split
of calc sum into a separate thread, and thus creating a kind of Functional split or
functional pipeline for this example application.

For this functional pipeline we will require two threads. We will put the
calc sum block into one thread and the rest in the second thread.

www.graphviz.org
www.graphviz.org

www.manaraa.com

6 MPA: Parallelization Made Easy 159

Func main

T1 all

Loop outer

Func T1_computeKernel

Loop iters

Loop i

Loop j

Func T1_computeKernel_1

Loop iters

Loop i

Loop j

T1 OUT

T1 IN

P0 OUT

OUT:
sum

P0 IN

IN:
sum,
carry

P0 example_parsection

Fig. 6.13 Graphical representation of parallelization structure for trivial case

www.manaraa.com

160 G. Vanmeerbeeck and T.J. Ashby

T1 top

IN:
carry

T2 bottom

IN:
sum

OUT:
sum

tmp

Fig. 6.14 Simplified graphical representation of functional split

Here is the parallelization specification:

processor P1

parsection example_parsection:

parsecblock label main::parsection1

thread top:
include label store_in_temp
include label compute_carry

thread bottom:
include label calc_sum

In Fig. 6.17a you can see the graphical representation of the resulting functional
split. In this graph we can clearly see that a communication channel (FIFO) was
required for variable tmp.

There is also a more simplified version of this graph available, not indicating
any of the nested loops and/or internal structures, but simply illustrating all threads
with their names, all queues (+ for which variable) and all thread configuration
parameters. see Fig. 6.14 for the representation of this functional split.

In the resulting waveform in Fig. 6.15 we can see that this communication
channel, although blocking in nature (blocking read when empty, blocking write
when full) does not affect the overall performance of the parallelization. In fact
from the thread activity waves we can see that in steady state both threads are almost
continuously active.

The same conclusions can be drawn from the simulation report. This report
is generated upon the end of simulation by the HLsim library. It reports the
accumulated execution times for every thread, waiting times for queues, number of
read and writes for every FIFO, etc. All these numbers are also compared against the
same behaviour but then in one single (sequential) thread. This to give the designer
an idea of the overall performance gain of his parallelization effort.

www.manaraa.com

6 MPA: Parallelization Made Easy 161

F
ig

.6
.1

5
W

av
ef

or
m

fo
r

fu
nc

ti
on

al
sp

li
t

www.manaraa.com

162 G. Vanmeerbeeck and T.J. Ashby

Here is the overall performance reporting that can be found in the report file
(report filename is mps hlsim report.txt:

Parsection 1:

#executions: 1
tot #cycles: 1530128
avg #cycles: 1530128
min #cycles: 1530128
max #cycles: 1530128
active : 100.0%

tot processing cycles: 2700000
speedup factor: 1.76x
#threads: 2
speedup per thread: 0.88x

From this we can conclude that there are 2 parallel threads present in this
parsection, and that the overall execution time compared to the single threaded
(or sequential) execution of the application is 1.76 times faster for this parallel
execution. Note that due to the way communication is simulated within HLsim, that
this is more of a theoretical speedup factor. In a real implementation this number will
reduce due to bus arbitration and communication overhead. Obviously, the closer the
speedup factor is to the number of threads present, the better the result. Or the better
the available parallelism in the application was exploited.

In addition to the overall performance report listed here above also a detailed
report can be found per thread and per communication channel. Here is from the
same report file the details for thread 2 and also for FIFO 0:

Thread 2 (bottom):

tot #cycles active: 1530128
avg #cycles active: 1530128 (100.00%)
avg #cycles idle: 130008 (8.50%)
avg #cycles busy: 1400120 (91.50%)
avg #cycles processing: 1400000 (91.50%)

parallelization overhead:

avg #cycles waiting for loop sync: 0 (0.00%)
avg #cycles waiting for FIFO: 130128 (8.50%)

FIFO put: 0 (0.00%)

pre put: 0 (0.00%)
FIFO full: 0 (0.00%)
put copy: 0 (0.00%)
post put: 0 (0.00%)

FIFO get: 130128 (8.50%)

pre get: 40 (0.00%)
FIFO empty: 130004 (8.50%)
transfer: 4 (0.00%)
get copy: 40 (0.00%)
post get: 40 (0.00%)

...

FIFO 0: T1 -> T2 (tmp):

elem size: 4
fifo depth: 0

www.manaraa.com

6 MPA: Parallelization Made Easy 163

tot #elems transfered: 10
avg #elems transfered: 10
avg #bytes transfered: 40
max #elems in FIFO: 1
avg #elems in FIFO: 1
avg #times FIFO empty 10 (100.00%)
avg #times FIFO max usage: 10 (100.00%)

avg #cycles waiting for FIFO: 130248 (8.51%)

FIFO put: 120 (0.01%)

pre put: 40 (0.00%)
FIFO full: 0 (0.00%)
put copy: 40 (0.00%)
post put: 40 (0.00%)

FIFO get: 130128 (8.50%)

pre get: 40 (0.00%)
FIFO empty: 130004 (8.50%)
transfer: 4 (0.00%)
get copy: 40 (0.00%)
post get: 40 (0.00%)

From this report we see that FIFO 0 is a communication channel between threads
T1 and T2 implemented to transfer the tmp variable which has a size of 4 (bytes).
The depth of this FIFO is reported as 0 (NIL). For the HLsim simulator a zero depth
FIFO means unbound or with infinite depth. The advantage of having an infinite
sized FIFO is that often you can extract FIFO depths from running the simulation.
Here for example the maximum number of elements in the FIFO is reported as
1. This means that a FIFO with a depth of 1 would be sufficient for this queue.
Although making the FIFO with a depth of 2 (also known as ping-pong buffer)
would probably be better to avoid read/write collisions.

From both the details of thread 2 and FIFO 0 it is clear that the HLsim simulator
is implementing a polling based FIFO communication scheme: there are way more
FIFO get requests than there are FIFO put requests.

Functionally however it is correct since the actual number of FIFO writes (listed
in put copy) and FIFO reads (listed in get copy) are identical.

6.4.4 First Data Split

Now we will illustrate the data split capabilities of MPA. Note however that in
this context data-split needs to be interpreted as being a kind of loop-iteration
parallelization.

In practice this will mean that from all the required iterations a subset will be
executed inside one slave thread, while the rest will be executed inside another slave
thread. This approach however is not limited to two slave threads. In principle as
many slave threads as there are loop iterations could be inserted by the tool.

www.manaraa.com

164 G. Vanmeerbeeck and T.J. Ashby

T1 left

IN:
carry
sum

T2 right

OUT:
sum

sumcarry

Fig. 6.16 Simplified graphical representation of data split

Here is the parallelization specification to use:

processor P1

parsection example_parsection:

parsecblock label main::parsection1

thread left:
looprange iterator outer from 0 to 5
include label store_in_temp
include label calc_sum
include label compute_carry

thread right:
looprange iterator outer from 5 to 10
include label store_in_temp
include label calc_sum
include label compute_carry

This specification states that all kernels will be executed by both slave threads,
however iterations 0 up to (but not including) 5 will be calculated by thread left
whereas iterations 5 up to 10 will be calculated by slave thread right.

In Fig. 6.16 you can see the simplified graphical representation of this data level
split.

Note from Fig. 6.17b that for the sum variable a reduction chain was detected
by the MPA tool. There is no explicit communication channel generated for this
variable, while upon first glance an inter-thread dependency is to be expected similar
to the carry variable. However thanks to the build in reduction chain analysis
the loop iteration dependency was removed by the MPA tool. This enhances the
application speedup since now both slave threads can run in parallel without having
to synchronize upon every iteration. For the final correct behaviour a special kind of
communication channel, called reduction chain FIFO, is inserted for variable sum:
at the end of thread T1 the thread left is sending its partial result for sum towards
thread right. Here the final result for sum is calculated and sent back to the Master
thread.

www.manaraa.com

6 MPA: Parallelization Made Easy 165

Func main

P0 example_parsection

T1 top

Loop outer

Func T1_computeKernel

Loop iters

Loop i

Loop j

T2 bottom

Loop outer

Func T2_computeKernel

Loop iters

Loop i

Loop j

put FIFO 0

get FIFO 0

tmp

T1 IN

T2 OUT

T2 IN

P0 OUT

OUT:
sum

P0 IN

IN:
carry

IN:
sum

Func main

P0 example_parsection

T1 left

Loop outer: from 0 to 5

Func T1_computeKernel

Loop iters

Loop i

Loop j

Func T1_computeKernel_1

Loop iters

Loop i

Loop j

T2 right

Loop outer: from 5 to 10

Func T2_computeKernel

Loop iters

Loop i

Loop j

Func T2_computeKernel_1

Loop iters

Loop i

Loop j

put FIFO 0

T1 IN

put FIFO 1 get FIFO 0

carry

get FIFO 1

sum

T2 OUT

P0 OUT

OUT:
sum

P0 IN

IN:
sum,
carry

Fig. 6.17 Graphical representation of (a) functional and (b) data split

www.manaraa.com

166 G. Vanmeerbeeck and T.J. Ashby

6.4.5 Combined Functional/Data Split

In this section we will illustrate a combination of the two previous techniques: a
combined functional and loop-parallel application split.

Here is the parallelization specification that we will use:

processor P1

parsection example_parsection:

parsecblock label main::parsection1

thread left:
looprange iterator outer from 0 to 5
include label store_in_temp
include label calc_sum

thread right:
looprange iterator outer from 5 to 10
include label store_in_temp
include label calc_sum

thread carry:
include label compute_carry\\s

Upon completion of the MPA tool, the parallelized application code is being
compiled and run with a timing-annotated software simulator (called High-level
simulator or HLsim). With this tool we can evaluate how much parallelism we have
really brought to the application, compared to a sequential execution. It does this by
simulating the generated software, taking timing annotation values for the kernels
into account and while respecting all communication and synchronization between
threads.

In Fig. 6.18 you can see the simplified graphical representation of this combined
functional/data level split.

In addition to this textual report about the activity and waiting times for every
thread, FIFO and synchronization primitive, it is also possible to have the simulator
generate a waveform trace of the execution of the parallelized application.

If we do this for the latter version of the example at hand, we get a waveform
similar to Fig. 6.19. Here we can see the activity for every thread, the depth counters
for every FIFO and if a thread is blocked or waiting, it shows who or what it is
waiting for.

The resulting graphical representation can be found in Fig. 6.20. From this graph
we can indeed see that three threads are present in the parallelized code: T1(left),
T2(right) and T3(carry). FIFO communication (and hence synchronization) is
required for variable carry between threads T1 and T3 and between threads T2
and T3. In addition a special reduction chain FIFO is present at the end of thread
T2 sending the (partial) value of variable sum to thread T3. To illustrate also the
correct-by-construct approach of the MPA tool,you can see that for FIFO0 an initial

www.manaraa.com

6 MPA: Parallelization Made Easy 167

T1 left

IN:
carry\ (intended)

sum

T2 right

OUT:
sum

sum

T3 carry

IN:
carry

carry

carry

Fig. 6.18 Simplified graphical representation of the combined split

FIFO-put action was generated, while for FIFO1 a finial FIFO-get action was put
in place. This is because the tool has detected that these were both required for a
complete synchronization of the application, and of all its slave threads.

6.5 Summary and Conclusions

In this chapter a source-to-source transformation tool called MPA was presented
that is able to introduce parallelism into the application. The parallelism is defined
by the designer in a separate text-file, and uses labels that were introduced into the
original application source code. This approach allows for an easy evaluation of
different parallelization options without any changes to the application itself.

The MPA tool uses the underlying framework to do variable lifetime and
dependency analysis and will based upon this information introduce the required
synchronization and communication mechanisms between the generated parallel
threads in the transformed application code.

MPA uses a generic API to separate the platform specific part of the implemen-
tation (threads, communication, synchronization) from the generated application
code itself. This way MPA can be used to target multiple platforms and Operating
Systems.

Within the context of the MOSART Project a number of extensions were
developed to improve the capabilities of the MPA tool. These extensions include
annotation and visualization of the resulting parallelization and the introduction of
data-level parallelism to the output.

The bottom half of this chapter took a simple example in tutorial style through
the MPA tool flow, illustrating the capabilities and features of the tool itself.

www.manaraa.com

168 G. Vanmeerbeeck and T.J. Ashby

F
ig

.6
.1

9
W

av
ef

or
m

fo
r

co
m

bi
ne

d
fu

nc
ti

on
al

/d
at

a
sp

li
t

www.manaraa.com

6 MPA: Parallelization Made Easy 169

Func main

P0 example_parsection

T1 left

Loop outer: from 0 to 5

Func T1_computeKernel

Loop iters

Loop i

Loop j

Func T1_computeKernel_1

Loop iters

Loop i

Loop j

T2 right

Loop outer: from 5 to 10

Func T2_computeKernel

Loop iters

Loop i

Loop j

Func T2_computeKernel_1

Loop iters

Loop i

Loop j

T3 carry

Loop outer

put FIFO 2

get FIFO 0 put FIFO 0
carry

T1 IN

get FIFO 2

sum

final get FIFO 1

get FIFO 1

put FIFO 1

carry

T2 OUT

P0 OUT

OUT:
sum

carry

T3 IN

init put FIFO 0

carry

P0 IN

IN:
sum

IN:
carry

Fig. 6.20 Graphical Representation of combined functional/data split

www.manaraa.com

170 G. Vanmeerbeeck and T.J. Ashby

References

1. Associated Compiler Experts BV. Parallelization using polyhedral analysis. White paper cosy-
8153-polyhedral, Amsterdam, March 2008.

2. G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static data flow. In
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference
on, volume 5, pages 3255 –3258 vol.5, 9-12 1995.

3. J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid, H. Meyr, T. Isshiki,
and H. Kunieda. Maps: An integrated framework for mpsoc application parallelization. Design
Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pages 754–759, June 2008.

4. Johan Cockx, Kristof Denolf, Bart Vanhoof, and Richard Stahl. Sprint: a tool to generate
concurrent transaction-level models from sequential code. EURASIP J. Appl. Signal Process.,
2007:213–213, January 2007.

5. Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for shared-memory
programming. 5(1):46–55, January/March 1998.

6. ISO/IEC/JTC 1/SC 22. Iso/iec 9945-1:1996, portable operating system interface (posix) – part
1: System application program interface (API), November 1996.

7. Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. Drdu: A data reuse analysis
technique for efficient scratch-pad memory management. ACM Trans. Des. Autom. Electron.
Syst., 12(2):15, 2007.

8. T. Isshiki, M. Z. Urfianto, A. U. Khan, D. Li, and H. Kunieda. Tightly-coupled-thread model: A
new design framework for multiprocessor system-on-chips. In Design Automation Symposium
(Japan), number 7, pages 115–120. Tokyo Institute of Technology, July 2006.

9. Ireneusz Karkowski and Henk Corporaal. Fp-map - an approach to the functional pipelining
of embedded programs. In HIPC ’97: Proceedings of the Fourth International Conference
on High-Performance Computing, page 415, Washington, DC, USA, 1997. IEEE Computer
Society.

10. Bart Kienhuis, Edwin Rijpkema, and Ed Deprettere. Compaan: deriving process networks from
matlab for embedded signal processing architectures. In CODES ’00: Proceedings of the eighth
international workshop on Hardware/software codesign, pages 13–17, New York, NY, USA,
2000. ACM.

11. Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, 1995.

12. Message Passing Interface Forum. MPI: A message-passing interface standard, June 1995.
13. Antoniu Pop, Sebastian Pop, and Jan Sjodin. Automatic streamization in gcc. In GCC

Developer’s Summit, 2009.
14. Sander Stuijk, Marc Geilen, and Twan Basten. Throughput-buffering trade-off exploration for

cyclo-static and synchronous dataflow graphs. IEEE Trans. Computers, 57(10):1331–1345,
2008.

15. The Multicore Association. Multicore communications API specification v1.063 (MCAPI),
March 2008.

16. William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In MICRO ’07: Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pages 356–369,
Washington, DC, USA, 2007. IEEE Computer Society.

17. Konrad Trifunovic, Albert Cohen, David Edelsohn, Li Feng, Tobias Grosser, Harsha Jagasia,
Razya Ladelsky, Sebastian Pop, Jan Sjodin, and Ramakrishna Upadrasta. Graphite two years
after. In GCC Research Opportunities Workshop (GROW), 2010.

www.manaraa.com

Part III
Industrial Applications

www.manaraa.com

Chapter 7
MPSoC Architecture Performance Analysis
for Agile SDR Radio Applications

Sylvain Aguirre and Bernard Candaele

7.1 Trends on SDR/Agile Radio and Supporting Multi-Core

7.1.1 Multi-Core Trends in Mobile Terminals

With the endless transformation of telecommunications in the last decades by the
market (higher connectivity, deregulation, globalization, more mobility and new
services) and related technology innovations, ubiquitous access to all types of
media, data, audio or video is becoming a reality.

In the convergence trends of, communication access everywhere and associ-
ated IT plus multimedia services, the system definition is becoming extremely
complex as well as the product development. The progress in microelectronics
with multi-cores allows further integration but as such requires new development
methodologies.

For embedded systems such in wireless mobile terminals, the more demanding
algorithms in signal processing, image processing and high bandwidth connectivity
have been enabled thanks to multi-cores platforms, while providing multi-modes
operations, preserving low power and autonomy (Fig. 7.1):

• First generation was addressed with ASICs then programmable base band SoC
such for the codec, the modem and radio protocol stack. The transition to multi-
standard i.e. GSM, Edge, GPRS, UMTS . . . were enabled with programmed
radios.

• New generation devices integrates general-purpose multi-core processors, and a
number of domain specific many-core subsystems, such modems (dealing with
GSM, HSPA, UMTS, CDMA, WIMAX, LTE/LTE-A), codecs and application

S. Aguirre (�) • B. Candaele
Thales Communications and Security, Paris, France
e-mail: Sylvain.AGUIRRE@fr.thalesgroup.com; bernard.CANDAELE@fr.thalesgroup.com

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 7,
© Springer Science+Business Media, LLC 2012

173

Sylvain.AGUIRRE@fr.thalesgroup.com;
bernard.CANDAELE@fr.thalesgroup.com

www.manaraa.com

174 S. Aguirre and B. Candaele

Fig. 7.1 Wireless waveform and application portability per generation

processors. At this stage, different programming models exist according to the
processing domains. The application processor allows software portability and
has enabled SOA (Service Oriented software Architecture), while the reuse of
legacy code from previous generation devices, incremental software designs
and the general paradigm of parallel programming onto multi-core are main
challenges. The transceiver terminals have to cope high demanding processing,
while being flexible enough to run multiple standards and while achieving design
constraints: real time processing, efficiency and flexibility, small footprint and
low power consumption, and cost.

• The architecture of new high end mobile phones is now resuming in two chips:
1 baseband and 1 radio standardized on their interfaces (such DigRF), then
coupled to the application processor.

7.1.2 Considered Challenges

New methodology and design approaches are mandatory to deal with the high
demanding embedded applications as described above.

The existing and further growing parallel architectures have raised the inherent
difficulties in parallel programming to the front stage, and is demanding research
into novel parallel processing architecture and software programming. In the frame

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 175

of MOSART program, several enabling technologies have been researched and
exercised:

– Parallel multi-core architecture
– Distributed but shared memory: enabling architecture and real time performance

to face the memory wall
– Multi-core architectural execution models: what parallel abstractions should the

hardware provide to the system engineer
– Runtime when making the application parallel: how to characterize this in the

system engineering phase?
– Also will abstraction executive models allow to identify and fix such interconnect

congestion issues and energy dissipation

The test case will also exercise directions in programming parallel embedded
systems onto heterogeneous platforms.

How to get a flexible solution? Flexible in the sense that a modification of the
specification of the application can be quickly implemented in the system.

7.1.3 Use Case: New Processing to Support Future Flexible
Radios

The considered use case by Thales is the future agile spectrum, also called cognitive
radios. The Cognitive Radio (CR) concept was posed in 1999 by J. Mitola III, the
Software Define Radio’s (SDR) father. It defines self-aware radios that continuously
adapt to their surrounding environment. Face to the increasing number of wireless
communication protocols and to the limited spectrum of frequencies, the flexible
spectrum SDR, named Cognitive Radio, is expected to be in charge of analyzing the
spectrum resource in order to identify free channels for transmission purpose.

J. Mitola defines 9 levels of cognition and the corresponding capabilities starting
form level 0 – the pre-programmed radio – up to the level 8 which corresponds to
the ultimate version that autonomously proposes and negotiates new protocols.

The Cognitive Radio challenges are several. Amongst them, building networks
of CRs will necessitate to introduce intelligence in the mobile radios and in the
network along with the mechanisms that enable the self-awareness such as spectrum
sensing. Solutions need to be developed to allow distributing this intelligence across
all the different functional layers of the system. This constrains to build the radios
and the system as a whole and make sure that the distributed intelligence cooperates
toward a common target goal. This will necessitate to develop new waveforms in a
cross-layer approach that will be able to integrate the spectrum sensing feature. The
platform that will be hosting the CR is an important parameter since it conditions
its capabilities to serve the CR features. The target platform is a Software-defined
Radio (SDR) one (Fig. 7.2) with wide bandwidth transceivers covering several bands
from 100 Mhz up to 6 Ghz, multiple RF chains, on the fly reconfiguration, . . .

www.manaraa.com

176 S. Aguirre and B. Candaele

AdaptationAdaptation
ManagerManager

Networking

Radio Access

RF Front-t-End

Application

Sensing

Transport Policies,Policies,
Location,Location,
System Info.,System Info.,
…

C
ro

ss
-s-
L

ay
er

 In
te

rf
ac

e

Wireless
Waveforms

Sensing

Focus for MOSART
Multi-core/Multi-computing

Cognitive Manager

RF &
antenna

SDR platform

Network
access stack

Multimedia
Codecs and I/O

,

Fig. 7.2 The building blocks for a cognitive radio terminal

Related researches are developed in the frame of the EC FP7 Work Program
“The Network of the Future” such to bring solutions and to impact the worldwide
telecommunications. Flexible SDR radios are also expected to give new industrial
opportunities, facilitating the introduction of mechanisms for dynamically sharing
the processing resources among different communications standards as reaction to
actual load shifts.

Such in June 2010, the Federal Communications Commission (FCC) released
access to vacant TV band UHF channels and allowed limited sensing services on
devices using these new released bands, like channel characterisation and energy
detection. Consequently, regulation authorities and operators will ask for advanced
monitoring to control the spectrum usage.

Thales Communications and Security, which is a major player in the radio
communication system market and spectrum monitoring system for operators,
addressed cognitive radio focusing on the sensing algorithm as part of MOSART
study. The sensing processing requires a huge computational power with a low
level of power consumption within the mobile terminal, but we imagine thanks to
the More Moore technology, this processing will be affordable in the next years
(Fig. 7.1).

Heterogeneous many-core SoC is the targeted technology for ensuring reconfig-
urability of terminal to support both the multiple waveforms and the applications
under very high performance requirements. Many new issues have to be overcome
to create this type of circuits. In that context, the MOSART project proposes an
innovative and efficient design development methodology to build a relevant system
that fits with this type of applications.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 177

Due to the overall complexity of Cognitive Radio application in terms of
computation power and memory size, the use case has been focused on the sensing
algorithm. The perimeter of Thales experiment is built on two main steps:

– Transposition of a GSM bandwidth signal into base-band (referred as step 1 in the
rest of this document).

– Channel extraction of the incoming wide band radio signal (referred as step 2).

The objective and approach to address heterogeneous many-core embedded system
issues are described in terms of design methodology and tool flow. A coarse-grain
partitioning of the application is detailed as a preliminary step towards a more
accurate platform architecture design space exploration and mapping.

Finally, results related to each MOSART technology and tools that have been
experimented all along the ICT-FP7 project are reported to value the MOSART
approach in the MPSoC design domain:

– Code profiling for accelerators and code marking for parallelisation
– Generation of a parallelised code version under coarse grain estimation of the

performance
– Computing Performance Profiling per MPSoC configuration and selection of the

best multi-core configuration

7.2 MPSoC Design Methodology and Tool Flow

7.2.1 Design Methodology Overview

This paragraph describes the design methodology exercised by Thales during the
MOSART project and the associated tools and technologies. Figure 7.3 shows a
high level view of the MOSART methodology for MPSoC design. It begins with
a sequential description in C code of an embedded application from which two
explorations are achieved at both processor architecture and code partitioning levels.

The left side of the methodology (left hand box) consists in identifying the
algorithms to be accelerated (while preserving flexibility) with the best processor
architecture through Design Space Exploration (DSE): the resulting structure leads
to a so called Application Specific Integrated Processor (ASIP) that it is supposed
to be the most suited processor to meet the application requirements in terms of
computational power, power consumption and local memory accesses. The resulting
platform is made up of a set of the previously defined ASIP and it is claimed as
homogeneous platform.

On the other hand, a more application specific, and then efficient, platform can
be defined. In that scope, several different processor architectures are needed to be
part of the targeted platform. The partitioning of the software – and the associated
number of split codes – is obtained once exploration on concurrency extraction of
the application is done.

www.manaraa.com

178 S. Aguirre and B. Candaele

System-level
exploration

Run
Time

Library

ASIP exploration

ASIP design
and implementation

Performance
Models

Sequential C Code

Parallelisation

Exploration

ASIP Templates

Dynamic Data
and Memory
Management
optimisation

System prototyping

System evaluation

NoC
templates

NoC customisation,
Power management,

mapping

Fig. 7.3 Overview of the MOSART MPSoC design methodology

From the software programming part, another exploration is expected on soft-
ware parallelisation, as shown in Fig. 7.3 (right hand box). The first objective is
to identify part of the code that can be executed in parallel. To do so, the system
engineer has to virtually divide the whole application into three categories:

– Sequential code: control, strong data dependencies.
– Data parallelism: chunks of data that can be processed in parallel.
– Functional parallelism: tasks that can be executed in parallel.

Functional parallelism can be seen as pipelining whereas data parallelism corre-
sponds to the Single Instruction Multiple Data (SIMD) approach.

The second objective is to generate a parallelized software by splitting the whole
C application into pieces of C code.

Finally, a third and last DSE is realized at the platform level, called “System
Level Exploration”, that takes into account the outputs of the two previous explo-
rations as well as other IP models like interconnects, memories and dynamic data
memory management.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 179

Clean C compliance

Software instrumentation

Software simulation

Parallelisation scenario
implementation

Software parallelisation
With MPA

Parallelized software
simulation

Performance metrics
Storage & Analysis

Coarse-grain MPSoC
Architecture Selection

Software partitioning

Atomium User flow

Applications workload
models

ABSOLUT User flow

D
eb

ug
gi

ng
 T

oo
l s

et

Performance Model
Platform

mapping

Simulation

Performance metrics
Extraction & Analysis

MPSoC Platform
Architecture

Conventional C
implementation

Application Specification

C code profiling

Parallelisation scenario
definition

Software Architecture
Definition

Sequential Software
implementation

C code profiling

Parallelisation scenario
generator design

Priliminary-to-Atomium user steps

Fig. 7.4 User view of the MOSART MPSoC design flow

7.2.2 Design Tool Flow Overview

Customers of multi-core SoC platforms cannot afford to manually program batteries
of processors. Consequently, providers of high performance embedded solution
work on smart software development framework allowing to easily spread appli-
cations on their products. The programming environment is planned to ease the
end user in designing the software and balancing the working load over all the
computing units.

The MOSART Electronic System Level (ESL) design approach – especially the
steps entitled Parallelisation and Exploration in Fig. 7.3 – is expected to prepare a
part of the valuable programming solution to the end user.

Are considered as end users, designers that need to run an application on an
MPSoC device: a system engineer for DSE or a software engineer for programming.
Likewise at this stage, the targeted device can still be virtual or a prototype hardware
board.

Figure 7.4 describes in details the way of deploying and executing an application
on MPSoCs as Thales has experimented it with the MOSART design methodology
and tools. The design flow has been built around Atomium and ABSOLUT tools
provided respectively by IMEC and VTT.

www.manaraa.com

180 S. Aguirre and B. Candaele

This chart is divided into three main parts:

– The part of the chart made up of rectangular boxes collects all the mandatory steps
which are required and recommended before achieving code partitioning with the
Atomium tool suite.

– The dark round boxes are actions to be performed according to the Atomium
tools usage. The objective is to explore the design space of parallelized scenarios
of the applications in order to select the most relevant parallelized code in terms
of performance.

– Finally, ABSOLUT (round white boxes) is used for identifying the best platform
architecture based on the previously selected parallelized C code.

The next two sections describe, in details, the MOSART design flow from a
user viewpoint at code partitioning and platform architecture exploration levels,
respectively. Likewise, benefits and future enhancement techniques are also reported
based on Thales experiments.

7.3 Coarse Grain Parallelism Extraction

This chapter focuses on user activities required to express and extract parallelism
from the Sensing algorithm (rectangular and dark round boxes). The objective is to
check how deep the application can be parallelized. Two results come out of the
parallelism extraction: first, it provides to the user an idea of the (homogeneous)
platform complexity in term of number of uniform processors required. Then, the
MPSoC Parallelisation Assistant (MPA) tool provides the C code of the application
in a parallelized C format.

7.3.1 Towards Parallelism

As highlighted by Fig. 7.4, preliminary steps (rectangular boxes) are numerous and
required time. However, these steps are fundamental in the sense that it allows the
user to reduce drastically time spent using the Atomium tools.

The starting points of the design flow consist in the specification of the
application – the sensing algorithm in our case – and its implementation in a
standard C and sequential code.

At this step, the most efficient approach is to take into account Atomium
restriction and guideline rules, called Clean C.

The code partitioning work effectively starts at the fourth step, entitled C code
profiling. The idea is to use a standalone tool able to report timing for all the
functions called by the program. Thales used the well-known gprof utility that helps
to identify time consuming functions used in the sensing application. At this step,
the user knows where to focus his effort and what functions have to be considered
as potential candidates for being executing in parallel over several processor units.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 181

Table 7.1 Sensing execution time ratio per function

Macro
functions

Global execution
time (%)

Micro
functions

Local execution
time (%)

Sensing use case Glue 0.7 – –
Step 1 5.6 – –
Step 2 93.7 Transposition 47.2

Quantification 7.1
NB Filtering 1 34
Signal Centering 0
NB Filtering 2 5.4

filtrageMultiChannel (On each 200 GSM channels: x200)main_filtrage_LB (x1)

Harmonization
of dynamicTransposition

Signal
Centering

QuantizationTranspositionLB Filtering NB Filtering 1 NB Filtering 2

Fig. 7.5 MPA-based software architecture of the sensing algorithm

As shown in Table 7.1, it came out that most of the execution time (93.7%) of
the sensing algorithm was concentrated in a part of the C code that will be renamed
step 2 as explained below.

Furthermore, software architecture guidelines have been determined – through
usage of the IMEC’s tools – in order to have a full benefit of Atomium utilities in
terms of parallelisation efficiency.

As a consequence, the sensing algorithm software architecture has been designed
according to Fig. 7.5.

Step 1 is performed via 3 functions labelled as main filtrage LB in the picture
whereas step 2 is realized with the 5 remaining functions labelled as filtrageMulti-
Channel (more detail on the application in Sect. 7.1.3). The key idea is to divide the
algorithm into functions that may be grouped for parallel execution purpose.

The software architecture must be designed by taking into account MPA features
and the way parallel computing can be defined within Atomium. Indeed, the
software architecture must allow the user to define any parallel code scenario that
seems relevant to him.

From that paradigm, many potential parallel software architectures of the sensing
were derived from the preliminary architecture shown in Fig. 7.5. Combined with
analysis of the initial C code profiling reported in Table 7.1, effort for extracting
parallelism was concentrated on step 2 which roughly consists in extracting
200 GSM channels (200 kHz wide each) from a 40 MHz wide band radio signal.

Resulting parallelisation scenarios are reported in Fig. 7.6 in which step 1 is kept
unchanged because it is not time consuming (only 5.6% of the whole execution
time) whereas step 2 is duplicated up to 200 times. The adopted principle is to
perform channel extraction in parallel – i.e. 200 channelisations at the same time –
due to the fact that the same functionality is achieved 200 times on unchanged input
data. In other words, this approach is similar to loop unrolling techniques applied by
compilers and where no data dependency exists between iterations: it is referred as
data parallelism. However, not all combinations are possible because the algorithm

www.manaraa.com

182 S. Aguirre and B. Candaele

main_filtrage_LB (x1)

Harmonization
of dynamic

Transposition LB Filtering

filtrageMultiChannel (On each 200 GSM channels: x200)

Signal
Centering

QuantizationTransposition NB Filtering 1 NB Filtering 2

Signal
Centering

QuantizationTransposition NB Filtering 1 NB Filtering 2

X N X N X N X N X N

Fig. 7.6 Sensing parallelisation scenarios

has to deal with 200 channel extractions only. So, ten configurations have been
considered: the five sequentially executed base functions are referred as a macro
function that is duplicated N times on separate processors and executed 200/N times
(where N is equal to 1, 2, 4, 8, 10, 20, 25, 50, 100 or 200).

Thus, the sequential sensing algorithm is split in N parts where N represents also
the number of threads that will run simultaneously on the under construct platform.

The MPA philosophy is quite simple in the sense that each piece of C code
identified to be a thread/kernel is annotated through a non-intrusive method by the
means of C labels. Hence, once the parallelism scenarios are defined, associated C
labels must be thought to be integrated in the implementation of the sequential C
code. Then, each label is mapped to a thread within a MPA configuration file. In
our case, the mapping is an off-putting task because of the large number of potential
threads and scenarios.

As a consequence, the regular architecture of the parallelised software allows to
develop a C program utility able to automatically generate the MPA configuration
file for a chosen parallelisation scenario, as mention in the box entitled Parallelisa-
tion scenario generator design of Fig. 7.4.

All the tasks detailed in this paragraph prepare the user to the next step that is
the use of Atomium tools for effectively achieving the parallelisation of the sensing
C code.

7.3.2 Sensing Application Parallelisation

At this step, the user is ready to get inside the Atomium design tool flow1 in order
to parallelise its application.

Due to basic assumptions used by the Atomium tool suite like the fact that a
unique, shared and single clock-cycle memory is considered, the performance gain
reported for any parallelisation scenario produces a coarse grain parallelisation.
Furthermore, memory congestion issues are not taken into account and threads are
performed on identical CPU cores.

1The tools involved are provided by IMEC and are part of version 4.0.5 of the Atomium tool suite.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 183

Table 7.2 Atomium clean C rules applied

Recommendation type Rule number Original Status Current Status

Restriction 2 V V
Restriction 4 V V
Restriction 13 V V
Restriction 14 V V
Restriction 17 ✖ V
Restriction 21 ✖ V
Restriction 23 V V
Restriction 24 V V
Not reported rule 28 ✖ V

As a preamble, few words must be dedicated to C code conformance. Indeed the
Atomium set of rules, named Clean C for MPSoC for C coding style, are divided
into two main categories: Restriction rules that must be fulfilled and Guidelines that
are strongly recommended.

Table 7.2 reports rules that Thales has dealt with in order to be compliant with
Atomium2. Goto and return C procedure caused dysfunction during simulation of
the instrumented C code (Restriction 17). Likewise, uses of pointers were removed
to fit with restriction 21. Finally, function calls inside condition statement induced
a failure during the parallelisation process (added rule 28).

The Atomium flow is made up of two main concepts that are, on one hand, se-
quential C code instrumentation for thread synchronisation and performance feature
reporting, and on the other hand, concurrent task extraction for parallelisation of the
C code achieved by MPA.

Indeed, instrumentation and simulation of the sequential code allow to get
scheduling and timing information that will be used during the simulation of the
parallelised C code to verify potential gain.

The developed C utility is applied to layout a chosen parallelisation scenario.
Then, MPA is used to parallelise the application and inserting appropriate mecha-
nism like FIFO for data dependency handling between threads.

Obviously, the next step consists in executing the partitioned software for
functional checking and performance gain analysis as depicted in Table 7.3.

Furthermore, the Performance Storage & Analysis step allows validating whether
the applied parallelisation scenarios were relevant. Even if extraction of concurrency
was limited to 50 threads instead of 200 items as expected due to memory leak issues
during simulation of the sequential C code, it came out that the execution time gain,
in terms of clock cycles, was proportional to the number of threads in charge of
extracting channels from a wide band signal, as illustrated in Table 7.3.

The 1:1 ratio between the number of cores and the performance gain is due to the
fact that no data are exchanged between threads during the channelisation step and

2Thales used version 0.2 of the Clean C for MPSoC document for C code conformance checking.

www.manaraa.com

184 S. Aguirre and B. Candaele

Table 7.3 Estimated
execution time gain vs.
number of cores

Number of cores
Execution time
(Million of cc) Gain

1 17,000 –
2 8,500 2
4 4,250 4
8 2,125 8
10 1,700 10
20 850 20
25 680 25
50 340 50
100 – –
200 – –

then, the lack of data dependency nullifies the communication and synchronisation
timing overhead. Indeed, the Atomium Performance Analysis utilities show that no
FIFO is inserted between threads.

Obviously, a platform made up of 50 processors will not reach a gain equal to
50 because Atomium does not take into account memory congestion. So, the gain
cannot be linear but asymptotic.

Atomium helps the user to generate a parallelised version of its application under
coarse grain estimation of the performance. As a consequence, the design flow
requires an additional tool able to capitalise the given C code partitioning under
more realistic and accurate assumption like the memory organisation, interconnect
Quality-of-Service (QoS) and CPU architectures.

In that purpose, the ABSOLUT tool has been experimented to provide more
accurate performance results as well as power consumption and hardware resource
use estimation (more details in Sect. 7.5).

7.3.3 Parallelised Software Debugging

Due to the number of cores in MPSoC systems, debugging is even more important
for those architectures and requires additional debugging features. Indeed, data
communications and synchronisations between processors rely on communication
protocols (e.g., message passing) and the way they are implemented (e.g., FIFO).

Likewise, observing memory usage and behavior at runtime is critical and
mandatory for MPSoC debugging.

Atomium debugging capability underlies on the openGL GNU GDB debugger.
Furthermore, well-known tools like Valgrind can also be used to identify memory
management issues. Those tools can be used at every compiling or simulation steps
reported in Fig. 7.4 and have been experimented to fix bugs.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 185

Table 7.4 Parallelized C code complexity

Sensing test case MPSoC reference MPA

Sequential C code 2146 LoC
Design approach Customised platform Function call tool generation
Parallelised C codea +37% +61%
aFigures obtained for a 10 processor-based platform

7.3.4 Parallelised Software Complexity

Parallelisation of the initial C code leads to an increase of its complexity. As
shown by Table 7.4, the C code parallelized with MPA is complex and contains
much more lines of code than a tranditional approach (hand-based). However, an
MPA advantage is to generate automatically and faster the parallelized C code.
Furthermore, the partitioning is very flexible in the sense that the definition of
parallelized scenarios is defined through labels. As a consequence, another benefit
of MPA is to keep the integrity of the initial and sequential source code.

7.3.5 Productivity

An identified added value of MPA compared to traditional manual approach for code
parallelisation resides in the productivity factor gain brought by the tool, which is
estimated, to be equal to 8 in that experiment.

Another important metric deals with the size of the generated parallelised C code.
In order to limit the memory instruction size and the associated debugging time, the
code must be as small as possible. For a 50-core platform, the parallelised code
overhead in terms of lines of C code is about 4 times longer than its sequential
initial version counterpart.

7.4 Fine Grain Platform Architecture Definition

This section describes the methodology that is applied for platform modelling and
architecture exploration.

Once a satisfying parallelisation of the application is found with the Atomium
flow, the parallelised code is translated into a set workload models (one per
thread) that represent the load of the application in terms of computation and
communication activities. Then, these statistical workloads are mapped on to a
virtual simulation platform model developed in SystemC and called ABSOLUT
(see Fig. 7.4). ABSOLUT represents the computation and communications capaci-
ties of the platform.

www.manaraa.com

186 S. Aguirre and B. Candaele

The virtual simulation platform is developed upon the following information:

– Number of concurrent processors identified by MPA.
– Type of each processor
– Memory organisation
– Type of memories
– Type and definition of the communication channels

7.4.1 Underlying MPSoC Architecture

The baseline platform that has been considered in this experiment is a Shared
Memory multiProcessor (SMP) many-core organisation where each node is made
up of a Very Large Instruction World (VLIW) ASIP, a private local memory, a public
and shared local memory and a Data Management Engine3 (DME) in charge of data
coherency and transfer through the interconnect.

Consequently, the memory is distributed across all the nodes of the MPSoC. On
the other hand, the considered ASIP is a 4-issue in-order processor with a single
load/store unit.

On the interconnect side, a low power 2D-mesh Network-on-Chip (NoC) has
been taken into account with synchronous communication mechanisms as detailed
in Chap. 3.1.1 McNoC Overview.

Finally, all nodes were connected to the NoC via Open Core Protocol (OCP)
interfaces.

7.4.2 Performance Model Metrics

In addition to code partitioning achieved by MPA, Atomium is also in charge of
checking the functionality of the parallelized code. On the other hand, ABSOLUT
is a performance model platform dedicated to refine the MPA coarse-grain speedup
and to report power consumption and energy figures.

To do so, metrics of Table 7.5 have been introduced in ABSOLUT to deals
with power consumption. Those metrics have been extracted from a TSMC 90nm
technology (HP library).

Likewise, memory requirements in terms of storage capacity for the sensing
application have been extracted by studying the sensing algorithm and are reported
in Table 7.6, as well as their respective power consumption based on Table 7.5. In
terms of latency, data are located in private SRAM memories that can be accessed
in a single clock cycle per its associated processing unit core.

3For more information on DME see Chap. 1.3 Data Management Engine (DME).

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 187

Table 7.5 Elementary power consumption of the MPSoC units

Components Power consumption

ARM idle 6 mW
ARM active 0.133 mW/MHz ∗400MHz+5mW = 58.2mW
Cache idle 4 mW
Cache active 0.060mW/MHz∗∗400MHz+4mW = 28mW
Memory idle (1∗10e–6mW/bit− cell)∗64K = 64uW
Memory active (1∗10e–6mW/Mt+6∗10e–7mW/Mt)∗64 = 102uW
Network IF 0.06mW/MHz∗400MHz = 24mW
Router 0.037mW/MHz∗400MHz = 14.8mW

Table 7.6 Data memory size per node of the MPSoC

Data memory
consumption (uW)MPSoC configuration

(# cores)
Data memory
per core (KB) Idle mode Active mode

1 250 250 400
2 135 135 216
4 84 84 134.4
8 56 56 89.6
10 51 51 81.6
20 40 40 64
25 38 38 60.8
50 33 33 52.8
100 31 31 49.6
200 30 30 48

Table 7.7 MPSoC structure organisation

Number of
master threads

Number of
slave threads

Number of
cores

2D mesh
organisation

Number of
unused cores

1 2 3 1×3 –
1 4 6 2×3 1
1 8 9 3×3 –
1 10 12 4×3 1
1 20 21 7×3 –
1 25 28 7×4 2
1 50 54 9×6 3
1 100 104 13×8 3
1 200 204 12×17 3

Finally, Table 7.7 describes the chosen MPSoC backbone that is a 2D mesh
structure made up of a matrix of processors and a control processor in charge of
executing a part of the algorithm (step1) and organizing communication between
threads.

www.manaraa.com

188 S. Aguirre and B. Candaele

All the cores are VLIW ASIPs with an Instruction Per Cycle (IPC) equal to
0.5. The processors, DME, memories and NoC are running at a clock frequency
of 400MHz4.

7.4.3 Application Programming Interface

Once the hardware MPSoC architecture has been described, the platform is
implemented, as depicted in Fig. 7.4 (“Performance Model Platform” bubble).
Consequently, an abstraction layer of services – so called Run-time Library –
provided by the platform and required by the sensing application must be defined
and implemented. In our case, the default Application Programming Interface (API)
available in ABSOLUT was sufficient to serve the application needs.

7.5 Performance Results for MPSoC Solutions

ABSOLUT provides several type of results of an application deployed on a MPSoC
platform like the occupancy rate of the hardware resources, the number of memory
accesses, the computing power, the execution time, the power consumption and
energy.

For instance, ABSOLUT reports the activity per each processor of the platform.
Activity is divided into three categories: idle, memory access and data processing
mode. This experiment confirms our expectations in the sense that all processing
units of the MPSoC have the same behavior in terms of activity, except the control
dispatcher processor.

Indeed, Figs. 7.7 and 7.8 show an opposite activity rate between processors in
charge of processing the step2 of the algorithm and the one dedicated to treat the
step1 part. This is due to the fact that the control/master processor has to manage an
increasing number of threads and to transfer data to more (slave) cores.

The execution load is equally spread over all the step2 processors. This behavior
validates the source code partitioning achieved by MPA.
The global activity of each node decreases when the MPSoC complexity increases
because they have less individual tasks to perform: all the cores equally share the
load. Nevertheless, the total computing power increases as illustrated in Fig. 7.9
to reach a maximum of 4.2 GIPS for 28 cores and proves the benefit of the
parallelisation.

4Both IPC and frequency have been obtained from the generation of a customized ASIP for the
sensing application with the Processor Designer tool of Synopsys.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 189

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 6 9 12 21 28 54

Number of cores

idle memory access data processing

Fig. 7.7 Processing cores activity profiling per platform configuration

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 6 9 12 21 28 54

Number of cores

idle memory access data processing

Fig. 7.8 Control core activity profiling per platform configuration

However, the computing power saturates as of 21 cores. This is a side effect of
the parallelisation in the sense that a new critical execution time path appeared:
indeed, this experiment focused on step2 of the sensing algorithm and step1 has not
been parallelised. Consequently, time to execute the step1 part of the code limits
improvement brought by the parallelisation of step2.

www.manaraa.com

190 S. Aguirre and B. Candaele

3134
3485

4191 4221

3673

2021

1160

681

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 6 9 12 21 28 54

Number of cores

P
er

fo
rm

an
ce

 (
M

IP
S

)

Fig. 7.9 Computing power profiling per MPSoC configuration

Furthermore, the computing power decreases for a 51 processors configuration:
this is due to the data communication overhead between the master processor in
charge of managing and distributing a common set of data to all other cores.

This phenomenon is highlighted by the Amdahl’s low that claims that the
maximum parallelising potential speedup of an application is modeled by (7.1).

speedup ≤ 1

(1−P)+ P
N

(7.1)

where P represents the percentage of execution time the application can be
parallelised and N is the number of time P part can be processed in parallel.

This speedup will not be reached since interconnect congestion, memory access
time and latencies are not taken into account in this formula. Moreover, each
additional processing unit will bring less computing power than the previous one
and the speedup limit is equal to 1/(1-P).

This behavior is illustrated in Fig. 7.10 where the theoretical speedup saturates
at 92.2% of execution time improvement compared to the sequential program: this
limitation is reached as of 21 cores.

Indeed, in the sequential form of the application, step1 represented 5.6% of
the total execution time, only. But as of 21 cores, the execution time between
step1 and step2 are balanced and step1 corresponds to 45% of the execution time.
Furthermore, the control processor in charge of step 1 has to deal with more and
more threads and data to be duplicated to serve all others cores.

As a consequence, to go beyond 21 cores and increase the performance, step1
must also be taken into account in the parallelisation process.

Another aspect of the methodology and tools experiment was to determine the
efficiency of the MPSoC solutions other than the execution time and complexity

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 191

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

number of cores

Theoretical Maximum Execution
Time Improvement

Theoretical Maximum Efficiency
(speedup/core)

Simulated Execution Time
Improvement

Simulated Efficiency
(speedup/core)

Simulated Efficiency
(speedup/thread)

Fig. 7.10 Theoretical and simulated execution time speedup profiling

ratio shown in Fig. 7.10. Indeed, power consumption is often the strongest constraint
of embedded systems. So, the idea is to use a metric for efficiency purpose that takes
into account energy of CMOS integrated circuits.

Power consumption will not be considered for estimating efficiency since this
parameter can be “improved” by reducing the clock frequency as shown in formula
(7.2), what is not necessarily expected.

P =C ∗V 2∗ f (7.2)

where C represents the total input capacitance of the cells connected to a CMOS
gate

V is the power supply
f is the operating frequency

Energy is not a valid alternative neither even if the previous clock frequency trick
disappears in that case since the application will run longer. Indeed, (7.3) shows that
the energy metric can be “enhanced” by reducing the power supply. However, doing
so increases the period, τ , of the circuit as illustrated in formula (7.4) that will slow
down the execution of the application.

E =C ∗V 2 (7.3)

τ = K ∗C ∗ V

(V −Vt)
α (7.4)

where τ represents the critical CMOS timing path

V is the power supply
Vt is the CMOS transistor voltage threshold

www.manaraa.com

192 S. Aguirre and B. Candaele

0

5000

10000

15000

20000

25000

1 3 6 9 12 21 28 54

Number of cores

E
D

P
 (

m
J

x
s)

Fig. 7.11 Energy-delay product profiling per MPSoC configuration

0
1
2
3
4
5
6
7
8
9

10

1 3 6 9 12 21 28 54

Number of cores

G
IP

S
/W

Fig. 7.12 MPSoC platforms efficiency based on computing power and power consumption

So, a relevant metric to compare energy for a same level of performance is
the Energy-Delay Product (EDP). Figure 7.11 reports the EDP metric for all the
considered MPSoC architectures and highlights that the configuration made up of
9 cores is the best among the 8 solutions since the smallest EDP value involved a
minimum number of cores compared to the 12, 21 and 28 matrixes.

Even if the computer power increases with the platform complexity as illustrated
in Fig. 7.9, the power consumption increases as well in such a way that the optimum
EDP figure is obtained for a platform made up of 9 cores only.

Based on computing power and power consumption figures generated by simulat-
ing platform performance models, it came out that the maximum number of GIPS
per Watt is equal to 9 and do not really scale with the MPSoC size as shown in
Fig. 7.12. Indeed, the power consumption increases with the number of cores from
76 mW for a single core to 923 mW for 54 ASIPs, as reported in Fig. 7.13, whereas
the computing power saturates around 4.2 GIPS and even decreases as previously
explained.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 193

0

100

200

300

400

500

600

700

800

900

1000

1 3 6 9 12 21 28 54

Number of cores

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

m
W

)

0

500

1000

1500

2000

2500

3000

3500

E
n

er
g

y
(m

J)

Power consumption Energy

Fig. 7.13 Power consumption and energy profiling per MPSoC configuration

The GIPS/W figure is not higher than 9 for the following reasons:

– A 90nm technology was considered; GIPS/W will be enhanced by the use of other
65, 45, 32 or 22nm technologies.

– Clock and power supply domain management mechanisms were not considered
and would reduce power consumption and hence increase the GIPS/W number.
The total power consumption of the platforms has been overestimated because a
conservative power consumption model of each processor was used.

– The many-core architecture does not take advantage of the NoC capabilities;
the Distributed Shared Memory (DSM) organisation, associated with the sensing
algorithm feature, does not solicit the high data throughput facilities of the NoC
since most of data to be processed are local to each node and processing time is
greater than time required to update local memories.

– The application does not allow having benefit of dynamic data management
techniques dedicated to limit power consumption and reducing global memory
access time.

– A part of the application that was voluntary not parallelised became a new critical
path in the sense the parallelised code waits for data provided by the part of the
application that is still sequential.

– A single and simple master processor handles synchronisation and data distribu-
tion with the others processing units. Time requires by this task increases with the
MPSoC complexity.

The previously results relevancy depend on the ABSOLUT tool credibility. To
be credible, the ABSOLUT outputs have to be realistic and accurate. That is the
reason why results of a single-core ABSOLUT platform have been compared to
the performance of a similar industrial VLIW synthesized processor that ran the

www.manaraa.com

194 S. Aguirre and B. Candaele

100

1000

10000

100000

1 10 100 1000

number of cores

ex
ec

u
ti

o
n

 t
im

e
(m

s)

Simulated Execution Time of the sensing application

Estimated Multi-ASIP excution time

Fig. 7.14 Executed vs. Simulated sensing execution time

same application: a gap of 3.2% have been identified between those two approaches
as shown in Fig. 7.14 (cercled points). The squared curve has been extrapolated
from core 1 by using the Amdahl’s law equation (7.1). The two curves mainly
diverge because Amdahl’s law does not take into account interconnect and memory
latencies.

7.6 Conclusion

Power consumption and energy dissipation are ones of the main issues that
embedded computing systems will have to tackle in a close future. In that context,
many-core SoCs have appeared to be valuable solutions. A trend for such multi-
application platforms is to consider heterogeneous systems made up of many,
specific and simple processing units in order to limit the power consumption.
The idea is to spread and balance the application operations over the platform
resources in a way that hot spots and performance, best energy operating or quality
of service will be leverage.

www.manaraa.com

7 MPSoC Architecture Performance Analysis for Agile SDR Radio Applications 195

Through this experiment, a methodology and design tool flow for MPSoC
implementation and code application partitioning have been evaluated by exercising
future cognitive radio application processing. It has been possible to run a whole
flow from the application specification to its deployment on a relevant many-core
platform model whose architecture has been identified and challenged during the
design flow.

The MOSART approach is based on tools that have been developed, validated
and integrated in a tool suite in a way that they allow to express, extract and exploit
parallelism from a sequential application coded in C language. The design flow
allows executing a virtual performance platform model which the parallelised C
code is mapped on it.

The methodology is made up of two main steps. The first one consists in
parallelising a sequential application described in a high level language according to
various scenarios defined by the user. The resulting threads communicate each other
via FIFOs that are automatically generated and integrated in the code. The output is
a set of parallelised codes that are then validated by simulation.

The second step of the methodology transforms the previously parallelised
application into a set of workload models (one per processing unit). Then, these
workload models are mapped to an accurate performance platform model that is
created by the user through libraries and customised IPs.

The test case has been supported by two tools that are Atomium for code par-
allelisation purpose and ABSOLUT for mapping, fine grain performance modeling
and profiling. These tools are distributed by IMEC and VTT, respectively.

Atomium and ABSOLUT are consistent from a processing unit occupancy rate
point of view. Furthermore, the ABSOLUT performance platform model has been
validated with a synthesized VLIW processor. The execution time of the sensing
application running on a single ASIP core platform modelled with ABSOLUT has
been measured to be more than 95% accurate compared to its execution on a similar
synthesized VLIW processor: indeed, in this configuration, time required to perform
the sensing algorithm on top of an ABSOLUT platform is 3.2% accurate.

Both tools were integrated in a tool flow in order to scan a large set of MPSoC
architectures that can be compared regarding computing power, power consumption,
energy, resource occupancy rate and memory access figures.

The main part of the sensing application has been split in 50 concurrent sub-
functions but it appeared that the 25-core MPSoC platform provides the higher
computing power (4.2 GIPS) and the shorter execution time. This due to the fact
that a part of the application was not taken into account in the parallelisation process
and became the new critical path after that.

Based on TSMC 90nm power consumption figures, the platform made up of 9
cores is the most efficient in terms of computing power regarding the lower power
consumption profile.

Of course, the achieved performance will be improved when moving to deep
submicron, and with the use of new power management of the cores and power
supply techniques.

www.manaraa.com

196 S. Aguirre and B. Candaele

In conclusion and in the scope of many-core SoCs, the following challenges have
to be mastered in order to be able to exploit the benefits of such architectures:

– Flexible application partitioning from sequential codes.
– Predictability and determinism of programs running on top of many-core struc-

tures.
– Application implementation at a high level of abstraction.
– Early evaluation of performance and reliability of programs running on a many-

core architecture.
– Middleware and hardware mechanisms to serve, at run-time, several constraints

like computing power, low energy operation, thermal dissipation and reliability or
quality of service.

– Optimized compilers and operating environments that take into account the
MPSoC micro-architecture to tailor the performance, thermal dissipation or low
energy operations.

– Adequate programming model and debugging support.

www.manaraa.com

Chapter 8
Application of the MOSART Flow
on the WiMAX (802.16e) PHY Layer

Frank Ieromnimon, Dimitrios Kritharidis, and Nikolaos S. Voros

Abstract Current and emerging telecommunication standards require the fast and
efficient design of large hardware/software systems that need to bring together
diverse engineering skills. MOSART offers a solution to the problem of fast design
of large systems by converting the current design cycle into the transformation of an
executable reference specification to software optimized for execution on tailored
multiprocessor platforms. ICOM has tested this approach using as test-bed a part of
the PHY layer for the 802.16e (WiMAX) standard; a strategic roadmap system for
INTRACOM. Use method and experimental results are reported for this exercise.

8.1 Introduction

This chapter outlines the implementation of a complex case study borrowed from
telecommunication domain using the MOSART approach. Scalable multiprocessors
such as MOSART are envisioned as the answer to the ever-increasing computation
requirements of modern applications. These same applications also pose severe
constraints regarding power-consumption on one hand and speed of development
on the other. MOSART aims for both high power efficiency and ease/speed of
development, through the use of an innovative Multi-core Multi-ASIP architecture
and advanced development tools.

The application described in the next sections is an implementation on the
MOSART platform of selected parts of the PHY layer of an experimental prototype

F. Ieromnimon (�) • D. Kritharidis
INTRACOM S.A.Telecom Solutions, Peania, Greece
e-mail: fier@intracom.gr

N.S. Voros
Technological Educational Institute of Mesolonghi, Department of Telecommunication Systems
& Networks (consultant to Intracom Telecom Solutions S.A), Greece

D. Soudris and A. Jantsch (eds.), Scalable Multi-core Architectures: Design
Methodologies and Tools, DOI 10.1007/978-1-4419-6778-7 8,
© Springer Science+Business Media, LLC 2012

197

fier@intracom.gr

www.manaraa.com

198 F. Ieromnimon et al.

of an IEEE 802.16e based broadband wireless system. The 802.16e standard has
been defined to support broadband mobile connectivity in urban environments,
through the use of scalable OFDMA and adaptive modulation ranging from BPSK to
QAM64, spatial multiplexing techniques (MIMO antennae), power-saving modes,
etc. The standard places heavier processing requirements than the earlier fixed
WIMAX standard of 802.16d, coupled with the ever-present need for low-power
mobile terminals. The use of NOSTRUM – a flexible multi-core platform –
for this application will go well with the need to adapt to changing standard
specifications. The chosen application subset has been coded in ‘C’, and gone
through the steps of parallelisation by means of the IMEC Atomium/MPA tool and
simulation/evaluation by means of the ABSOLUT environment by VTT.

8.2 Current State of the Art in Complex System Design

The current method for designing large systems, encompassing significant amounts
of SW and HW, can be roughly depicted with the diagram of Fig. 8.1. Usually,
one starts from textual specifications, either formalised in international standards
or informal. There may also exist partly or wholly executable specifications, in the
form of SDL or more recently UML code. Legacy ‘C’ code can also exist and may
have to be incorporated in the application. Typically, no single such specification
system will be capable of defining the entire application.

Translation into a cohesive form of executable specification is a largely manual
process. It is common to describe a large part of the specification in MATLAB

Fig. 8.1 Pictorial representation of a typical design flow for a large telecom & multimedia system,
including embedded SW and custom HW

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 199

code, to allow early stage validation and refinement of the application. This stage is
often employed for the generation of reference test-vectors, to be used in subsequent
simulation and validation steps.

Following the specification (and possible tool-assisted validation) stage, the
original specification can be rendered in ‘C’ code, which can be executed on
a generic computing platform (PC or workstation) for validation purposes. Test
vectors generated earlier by MATLAB or other tools may also be used as input
stimuli or output comparison data. If the simulation step indicates discrepancies
with the expected behaviour, the designer(s) go back to the ‘C’ rendering stage,
to modify the code in order to bring the simulated behaviour in line with informal
specifications or with the equivalent simulation output from, e.g. MATLAB. This
regression stage is illustrated Fig. 8.1 as “feedback A”. Since the code modification
process is done pretty much in the same manner as the first rendering stage, the
number of necessary iterations varies with design team experience.

Once the executable specification has stabilised, the design team moves on to the
design of custom hardware that embodies the specification’s functionality either
wholly or partly, with the rest of the intended functionality being supplied by
software running on embedded processors. Hardware specification languages such
as Verilog and VHDL are in widespread use and the custom hardware design is
again a manual process, because tools that can automatically generate high-quality
synthesizable RTL code starting from ‘C’ are still in their infancy.

Writing the SW to run on embedded processors is again a manual process
of identifying parts of the base ‘C’ source that should execute on the embedded
processor(s) and modifying them in order to be incorporated in the RTOS that
typically provides an abstract interface between the processor’s user space and the
custom hardware it must interface to. As such, this procedure is even more difficult
to automate in any way than custom HW design.

During this phase, there exist again feedback paths leading to earlier development
phase. One of them (“feedback C”) is driven by the simulation of the RTL models of
the developed HW and drives manual modification of the RTL source description.
The other path (“feedback B”) only becomes effective after building of a physical
prototype, which includes both the synthesized HW and the SW developed for the
embedded processor(s). It is then that broader, system-level functionality issues can
be identified and may lead all the way back to the original models.

8.3 The MOSART Proposal

MOSART proposes the use of a multi-core NoC platform as the vehicle for
implementation of complex systems. The platform is programmable, without the
need to develop custom hardware alongside the processing cores. Thus, while an
executable specification for the application is highly desirable from the developer’s
point of view in any case, a complete specification written in ‘C’ is all that

www.manaraa.com

200 F. Ieromnimon et al.

is required as the reference point for system development within the MOSART
framework. System development thus becomes more SW-oriented and the vehicle
for this SW approach is a multiple-processor platform.

Multicore systems are getting increasing attention recently, because people are
realizing that the two-decades old warning coming from computer science and
engineering departments in universities around the world is now coming true: single
processors are running out of steam and large ASIC design is not getting any
easier. One must note that multi-processor systems of various architectures are not
novelties. Various memory and interconnect topologies have been tried in various
experimental machines in the past, such as shared/distributed memory, bus-based,
star or grid interconnects, etc. Of these topologies, the idea of distributed memory
and a rectangular grid interconnect lends itself well to the planar lithography tech-
niques universally employed for chip manufacture. The implementation platform for
MOSART is employing just this architecture with some added features, that enhance
its capabilities: Point-to-point packet-based inter-node communication, a distributed
DMA capability to offload processors from simple data-movement between nodes
and per-node power-control features for power optimization. And of course, the
main advantage of a grid-based multi-core platform is always there besides these
enhancements: intrinsic expandability that is not limited by bus capacity or memory
devices throughput and communication latency that grows at worst linearly with
array size. A grid-based architecture is ideally set to exploit applications rich in
data-parallelism or streaming-based.

This changes a bit the design paradigm. It is now more important to produce
an executable specification of the entire application (e.g. in ‘C’) before moving
on with application mapping on the NoC platform. Therefore, the “Barrier A”
seen in Fig. 8.2 becomes costlier to cross, as the designer needs to stay within
the ‘C’-source generation phase for as long as it takes to produce a complete
description of the target system, because that will essentially be the SW running
on the multicore platform. That description should be the golden reference for the
MOSART environment (taking into account concurrency-modelling limitations and
real-time issues).

The NoC takes care of inter-processor communication in an efficient and
user-transparent manner. The processing nodes may be standard cores of fixed
architecture but, more importantly, they can also be user-defined ASIPS. This
second choice open the possibility of (and creates the need for) an optimization
stage, that attempts to optimally match ASIP capabilities to the target application.
Effectively, the development effort becomes the interplay between porting of the
golden reference ‘C’ source and producing one or more ASIPs optimized to run the
(modified for concurrency) ‘C’ source. The feedback paths implied by this process
are indicated as “opt A” and “opt B”, alongside the already discussed “feedback B”,
in Fig. 8.2 that illustrates a user’s view of the MOSART flow. Note that the indicated
feedbacks are within the MOSART framework. This implies that data format and
other interface issues are taken care-of. Therefore, dwell-time within these internal
development cycles is very short, compared with the conventional approach, where
ad-hoc translation scripts and protocols are created as needed, with the associated
expense of time, possibilities for misinterpretation, or even outright bugs.

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 201

Fig. 8.2 Illustration of the development flow within the MOSART framework. “Barrier A”
separates the MOSART domain from the ad-hoc executable-specification generation phase of the
previous phase

Ultimately, refinement of the interactions between components of the MOSART
toolset should result in a production system with the characteristics of current FPGA
systems, where the user is (usually!) not concerned with issues of correctness of
results or tool robustness, and (s)he is fairly confident that the physical platform
loaded with the targeted application bit-streams will behave just like the simulated
system. Of course, the pitfalls associated with passing from a simulation of typically
limited scope to a physical system with a thousand-fold or million-fold increase
in speed, still remain to be addressed. However, the taxing problem of mapping a
conventional sequential program to a multi-core platform will be solved, relieving
the designers from the onus of coming up with a silicon and power-efficient
platform, on top of the main effort associated with building their application.

One important observation can be made on the working model presented so far:
The original (“golden”) executable specification is coded in sequential ‘C’, but
the target of the MOSART flow is parallel programs that must run concurrently
(and correctly!) on multiple, possibly differing processor cores. Thus, the original
sequential program must be correctly turned into a number of concurrent programs.
This is a very hard task. Indeed, it is quite hard to produce correct concurrent
programs starting from scratch and having the underlying multi-core platform
stable and fully documented. Taking a sequential program, identifying available
parallelism and exploiting it through manual program transformations is harder still.

That is the reason that parallel programming is making such slow inroads into
the realm of system programmers, despite the acknowledgment of the advantages of

www.manaraa.com

202 F. Ieromnimon et al.

multi-core platforms. A large part of the problem stems from the fact that there
can be no automatic method for identifying parallelism available in a program,
thus human intervention is usually required, while at the same time is not enough:
Humans are very good at identifying patterns in programs, however they are not so
good at elaborating the consequences of the usual flow-control mechanisms found
inside programs, such as conditional statements, data-dependencies, exceptions, etc.

The MOSART approach for this problem is machine-assisted parallelization that
is user-driven. The user inserts in the original program labels, using standard ‘C’
notation, that leaves the functionality of the program intact. In addition, the user
supplies a small script, suggesting how the labelled program segments might be
parallelized. From then on, it is left to the MOSART tool flow to employ the user
input, for the correct transformation of the original program into multithreaded
version that exploits available parallelism.

8.4 Intracom Telecom Demonstrator

Selected parts of the PHY layer for an experimental IEEE 802.16e prototype have
been chosen as the demonstration vehicle for MOSART. The chosen parts, although
not accurately reflecting the standard’s PHY layer, they include computationally
heavy components, which exhibit substantial amounts of parallelism.

The drawing of Fig. 8.3 illustrates the component train for the application, linked
with shared memories which are organized as ping-pong buffers, to hold processed
data in transit between the chain’s processing stages. The blocks identified as “Tx
chip sequencer” and ‘Rx byte assembler” are simple FSMs that act as interfaces to
the byte-serial data stream leaving the first Scrambler block and entering the second
Scrambler (doing the unscrambling). The next section describes the designed and
implemented components.

8.4.1 Architecture of the Demonstrator

8.4.1.1 The TX Path

The example application’s Tx consists of a single-antenna “transmitter path”, made-
up from a bit-pattern generator, a QAM encoder capable of modulation schemes up
to QAM64 and an inverse-FFT of 512 points plus cyclic-prefix insertion. A 16-bit
scrambling polynomial of the form x14 + x13 + 1 is also employed as a scrambler
of the incoming bit-stream, to reduce the power content of any individual spectrum
component that will be present on the iFFT’s output. The unit operates in bit-serial
format, but it handshakes with the following component on a byte-by-byte basis.

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 203

Fig. 8.3 Application for evaluation of the MOSART platform

8.4.1.2 The Multipath Propagation Channel Model

The code for this block models a channel with two dispersive, AGWN propagation
paths. The coefficients characterizing path loss over frequency bands are developed
offline and jointly with the corresponding data for the MRC combiner (see next
section).

Figure 8.4 illustrates the mechanism for generation of the path-loss/phase-shift
coefficients, while also generating (under that same operational scenario) the
compensation vectors and the SNR-derived weight-factors for the MRC/equalizer
block discussed in the next section. Figure 8.5 illustrates the outline of the channel
model. As can be seen, the individual channel delay/phase shift is generated by
superposition of two individual phase-shifted components. AWGN noise is also
added to each distorted symbol stream, with a predetermined SNR.

Compensation vectors CV1,2 and weight-factors W1,2 are calculated as illus-
trated in Fig. 8.6 by the program of Fig. 8.4.

www.manaraa.com

204 F. Ieromnimon et al.

Fig. 8.4 Generation of
path-loss coefficients and
their compensating
coefficients for the
MRC/equalizer block

MRC
weights

Channel
coefficients

Stand-Alone
Data Generator

Test
Scenarios

I{I,Q}

O1{I,Q}

O2{I,Q}

Y1[i] = I[i]*C1,1 + I[i+d1i]*C1,2

AWGN()

AWGN()

SNR1

SNR2

Y2[i] = I[i]*C2,1 + I[i+d2i]*C2,2

Fig. 8.5 Structure of the channel model, featuring two propagation paths with distortion and
AWGN addition

Fig. 8.6 Method for generation of the MRC/equalizer block’s compensation vectors and weight
factors

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 205

O[i] = I1[i] x CV1[i] ' x W1+ I2[i] x CV2[i]' x W2,
for all i in {0,..,511}

I1{I,Q}

I2{I,Q}

O{I,Q}

Fig. 8.7 Conceptual view of the MRC/equalizer block

Q stands for the symbol vector produced by the i FFT of the Tx-path, while
Qj’ stands for the distorted & noise-loaded output symbol produced by the channel
model’s path j. The compensation vectors and weight factors are generated by
the off-line program illustrated in Fig. 8.4, since we will not be incorporating any
dynamic correction mechanism for updating the weight tables. The program re-
uses the channel model in order to produce distorted outputs of pre-selected input
symbols. The vector generator can also produce time-varying channel coefficients
and compensation factors, thus being able to simulate a variety of operating
conditions for the targeted physical layer chain.

8.4.1.3 The Rx-Path

The receiver path subset is formed around two FFTs of 512 points, (we assume
a twin receiving antenna architecture), preceded by their respective Cyclic-Prefix
Removal units, a Maximum Ratio Combiner plus equalizer, that merges the outputs
of the two FFTs based on pre-calculated SNR figures for the channel model’s
propagation paths, followed by a QAM Decoder, also capable of detecting mod-
ulation schemes up to QAM64 and finally a bit descrambler. The decoder’s output
drives a bit-pattern checker, which examines the received bit-stream against the one
processed by the TX path. Figure 8.7 illustrates in some detail the algorithmic design
of the MRC block.

8.4.2 Performance Requirements for the Demonstrator

We assume a maximum transmit/receive rate of 100Mbit/s, achievable by employing
64QAM modulation throughout. Under these assumptions, a rough measure of the
computational requirements for the chosen blocks is as follows:

• QAM Encoder: assuming QAM64 modulation, six integer multiply/accumulate
ops per sextet of data bits, plus two array-access ops per symbol, coming to 133
MIOPs/s.

www.manaraa.com

206 F. Ieromnimon et al.

• IFFT/FFT: Assuming a Radix-4 FFT of 512 points yields a requirement for
4.8GIOPS/s per FFT. Since we have one IFFT and two FFTs in our example,
the above figure must be tripled. We assume here that the unity complex roots
(twiddle-factors) for the FFTs have been calculated offline and reside in memory.

• Maximum Ratio Combiner: For the 2x1 MRC/equalizer, assuming 8 multiplica-
tions and 3 additions per sample-point and channel, plus four array-access ops
per sample, we come at approximately 110MIOPs/s.

• QAM Decoder: Assuming all incoming traffic was modulated in QAM64, a total
of 7 fixed-point operations plus 22 integer operations per symbol requires a
maximum capacity of 470 MIOPs/s.

• Cyclic-Prefix Insertion/Removal: The operation of this block consists almost
exclusively of in-memory reorganization of the working data buffer. The com-
putational requirements are thus approximately 2,8million memory read-write
ops/s, plus 2,8MOPs/s for index arithmetic, per CP block.

• Scrambler/de-scrambler block: These blocks operate bit-serially, thus making
inefficient use of the processor’s datapath. Taking this point into consideration,
and assuming no compiler optimisation of the required operations, 1,4GOPs/s
are required for blocks capable of delivering a 100Mbit/s data stream.

• 1-by-2 Channel Model: Based on the computational load as defined by the chan-
nel’s description, 130MOPs/s plus 10 Million math-library function-calls/sec are
required by this block. Assuming that each function call is of the order of 10 Ops,
we arrive at a rough estimate of 250MOPs/s for the channel model block.

Neglecting for now the computational overhead for the implementation of the
multipath channel model shown in Fig. 8.3, we can make the following observations:
First, that the computational load of the IFFT/FFT blocks exceeds the needs of
all other blocks combined by approximately a factor of 10. If this point is taken
into account, the computational requirements for a single Tx-antenna/twin Rx-
antenna PHY-layer implementation for 802.16e can be expected to stay just below
20GIOPS/s.

8.5 Evaluation Results

8.5.1 Code Outline of the Application

The system outlined in Fig. 8.3 was originally coded in fixed-point ‘C’ and validated
by running on a Linux-running PC. Output files generated by running the code are
stored for reference against which similar output of the parallelized versions of the
code were compared for consistency. The code outline is shown below.

#include <various_libs.*>
#include <user-defined-functions-prototypes.h>
#include <user-defined-constants.h>

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 207

unsigned char buff_a[SYMBOL_SIZE],....,
buff_j[SYMBOL_SIZE][2];
int buff_a[SYMBOL_SIZE],,
buff_j[SYMBOL_SIZE][2];
.....
main()
{
unsigned char local_c, local_1, local_2...., local_n;
int l_buff_a[SYMBOL_SIZE][2],....,
l_buff_i[SYMBOL_SIZE][2];

<read-only table and constants initialization>
<file I/O initialization>

for (iter = 0; iter < LOOP_SIZE; iter++ {
// Read a number of characters from file

pointer rp.
// Scramble and partition the byte stream into

bits groups
// according to modulation scheme.

// Generate FFT_SIZE number of QAM samples.
// Perform iFFT and CP insertion on FFT_SIZE

number of
// QAM-encoded samples.

// Emulate a two path channel featuring
phase/amplitude

// distortion and AWGN noise.
// Perform FFT on symbols coming from path A of

channel model.
// Perform FFT on symbols coming from path B of

channel model.
// Run MRC on the outputs of FFT_A and FFT_B.
// QAM decode the output of the MRC.
// Assemble bit groups into characters and

unscramble them.
// Write the resulting character block into file

pointer wp.
}

close(rp):
close(wp);

}

As can be seen, the application sequential code consists of an initialization section,
with the blocks illustrated in Fig. 8.3 having been modelled as a succession of code
fragments inside the “for(. . .)” loop which represents data traffic during simulation.

www.manaraa.com

208 F. Ieromnimon et al.

8.5.2 Parallelization Opportunities and Their Handling

The code outline of the previous section is a clear indicator of our methodology
towards parallelization: A clean partition of processing steps, without a single
feedback loop connecting any block, lends itself naturally to a pipeline of concurrent
functional blocks, each one working on data supplied from the block upstream while
supplying data to the block (or blocks in the case of the channel model) downstream.
This view influenced code restructuring in the manner indicated below.

for (iter = 0; iter < LOOP_SIZE; iter++ {
Read_Scramble: {

// Read a number of characters from file
pointer rp.

// Scramble and partition the byte stream into
bits groups as per modulation scheme.

}
QAMenc_iFFT: {

// Generate FFT_SIZE number of QAM samples.
// Perform iFFT and CP insertion on FFT_SIZE

number of QAM-encoded samples.
}
Channel: {
// Emulate a two path channel with

phase/amplitude distortion and AWGN noise.
}
FFT_MRC_QAMdec: {
// Perform FFT on symbols coming from path

A of channel model.
// Perform FFT on symbols coming from path

B of channel model.
// Run MRC on the outputs of FFT_A and FFT_B.
// QAM decode the output of the MRC.

}
Unscrable_Write: {
// Assemble bit groups into characters and

unscramble them.
// Write the resulting character block into

file pointer wp.
}

}

As shown in the shaded box above, code inside the functional block has been parti-
tioned into a number of labelled statement blocks (called “kernels” in ATOMIUM
terminology). Each block (or kernel) encloses a number of the functional blocks
outlined in Fig. 8.3. There is no one-to-one correspondence of functionality with the

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 209

Synchronization (data buffer plus code)

Thread (maps to computational kernel)

Read_
Scramble

QAMenc_
iFFT

Channel
Unscramble_

Write

FFT_
MRC_

QAMdec

Fig. 8.8 Functional split of application code

labelled kernels (e.g. one kernel only includes the Channel model, while another
kernel can include both FFTs, the MRC and the QAM decoder). The reasons for
this partition will be discussed in more detail in the following sections.

8.5.3 Parallelization Schemes and Their Evolution

Before using the IMEC instrumentation and parallelization tools (‘anl’ and ‘mpa’),
the source code had to be adapted in order to conform to the Clean-C guidelines
from IMEC. Instrumentation was then added in the form of user-modifiable function
calls that the ‘anl’ utility is employing for the purpose of measuring execution time
of the kernels (the “enterCB record()’ and “leaveCB record()” functions supplied
in template format in the IMEC design environment).

One must note that the “granularity’ of time-measuring by the kernel-monitoring
functions was rather poor, so that artificial time-counting overheads were introduced
by modifying the profiling functions in order to extract kernel execution times other
than just zero. This was judged necessary so that the execution profile screenshots,
generated by post-mortem visualization of simulation data, would display a more
realistic execution activity, instead of uniform chunks of activity irrespective of
computational load per kernel. Admittedly though, the activity profile reported by
‘hlsim’ can only serve as an abstraction of actual concurrent activity, as it is not
capable of modelling path- and traffic-dependent communication delays on a NoC
platform such as those of interest to MOSART.

The first attempts at parallelization adopted a natural mapping of computational
kernels, as indicated by the labelled blocks outlined in the previous section,
into individual threads, as shown in Fig. 8.8. In ATOMIUM terminology, Fig. 8.8
illustrates what is called a functional split of the original sequential code, i.e.
generation of threads that map to one or more functions that contain the definition
of computational kernels. Remember that the parallelised code is only the segment
enclosed by the “for(iter = 0;)” loop.

Eventually, after analysis of the parallelism that can be extracted from the
application’s functions the parallelization scheme of Fig. 8.9 was adopted. This
scheme is a combination of functional and data split, with read-scramble being
mapped to a single thread, feeding into a multitude of QAM-encode/iFFT threads,

www.manaraa.com

210 F. Ieromnimon et al.

Channel

Unscramble_Write

QAMenc_iFFT

Read_Scramble

FFT_MRC_QAMdec

Synchronization (buffer & code)

Thread (maps to stateless kernel)

Thread (maps to stateful kernel)

Fig. 8.9 Combined functional/data split of sequential code

followed by the Channel model mapped to a single thread, followed by another set of
data-parallel threads that map onto the FFTa/b, MRC and QAM-decode combination
kernel, followed by the unscramble/file-write kernel mapped onto a single final
thread.

The mapping of Fig. 8.9 encodes several observations about the application: first,
it addresses the state-preservation problem of stateful processes by having these
kernels (identified in orange in the figure) mapped onto single threads. Second,
it is a reflection of knowledge about the modelled system’s properties, i.e. the
fact that the QAM-encode/iFFT kernel and the FFTa,b/MRC/QAM-decode kernel
are both heavy computationally and stateless, i.e. they are mere functions (albeit
of significant complexity) applied onto the data stream. Thus, it makes sense to
generate multiple copies of these threads in order to gain from their concurrent
execution. And because the FFTa,b/MRC/QAM-decode threads are (roughly) twice
as heavy as the QAM-encode/iFFT threads, it also makes sense to have more copies
of the former than the latter type of thread. Unfortunately, the thread that is mapping
the Channel model kernel, being stateful, cannot be replicated, despite being also
computationally “heavy”. Worse still, the thread sits right in the middle of the

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 211

pipeline of functional blocks, thus creating a bottleneck for parallelization. The
effect of this topological feature of the application on speedup and performance
is discussed later in this section.

In order to address spurious data-dependencies between members of the thread-
sets handling QAM-Encode/iFFT and FFT/MRC/QAM-Decode, that severely de-
graded achievable speedup, the loopsync directive provided by MPA was used with
the parallelization scenarios (the “par.spec” files). With this scheme, the split of the
data-set between the threads of a group is controlled by having the upstream buffer
feeding into the downstream threads replicated by as many times (approximately) as
there are threads to share the computational load. Additional code in the application
source controls update and access of the multi-buffer entries.

Finally, the “par.spec” file needs to declare the multi-buffer as shared, to prevent
FIFO insertion by ‘mpa’. By this measure, we finally achieved significant speedups
for various thread counts, as discussed in the next section. Execution of the
parallelized code gave results consistent with those of the sequential reference code
and thus we were able to accept the resulting code as correct. Using loopsyncs
resulted in significant reduction of the FIFOs needed for inter-thread communication
and a consistent correlation between thread-count and speedup was obtained.

A downside of the use of loopsyncs was that source-code is now coupled to
the “par.spec” file that generates the multi-threaded version of the reference source.
This is less than ideal, although in our case we chose to declare multiple buffers only
once, making them large enough to accommodate all the multi-threaded scenarios
we cared to explore. In this manner, only constants in the source code needed
editing; a step that can easily be replaced by scripting, in order to support automated
regression runs.

8.5.4 Use of the VTT ABSOLUT Suite

Following a satisfactory outcome of the sequential software parallelization process,
the resulting code needs to be translated for use by the ABSOLUT environment,
where the parallel code is compiled and linked to a System-C model of a multi-core
platform of the chosen architecture. The resulting object is simulated in order to
extract performance metrics such as memory and communication overheads, impact
of communication overhead on computation, multi-core efficiency vs. sequential
execution, etc.

8.5.5 Use of the “g++absith” Compiler and of the Python
Post-Processor

The makefile used to control generation and compilation of the instrumented
and parallelized code was modified, in order to support a two-step process of

www.manaraa.com

212 F. Ieromnimon et al.

(a) extracting use-profiles of user functions calls and (b) use of these profiles
for the generation of the workload models that are employed by the ABSOLUT
environment for simulating code execution on a properly configured virtual multi-
core platform. During the first part of this process, ‘g++absinth’ is used to compile
the parallelized code generated by the ‘mpa’ tool. When executed, the binary thus
created is producing, in addition to its nominal output, a set of files having the
.gcda suffix. These files contain profiling information for all user-defined functions
that make-up the targeted application. During the second part of the process, the
‘g++absinth’ compiler is invoked again, but this time with a switch specifying that
the previously generated profile information be used for generation of the workload
models making-up the user application. In addition to the executable binary, a set of
C++ files and headers are produced, alongside workload model files (called “basic
block” files, having the suffix.bb).

The .bb files contain instances of service models that correspond to mps xxx()
function calls from the ATOMIUM RtLib library. Some additional file-editing work
is required for binding the application process with the target platform model,
updating of the CMakefile that configures and generates makefiles, before finally
compiling and executing the binary that simulates the application running on the
virtual multi-core platform.

8.5.6 An Automated Platform Generation Utility

Exploitation of large multi-core platforms involves experimentation with node
configurations of varying size and topology, in order to find the best fit between the
type and amount of parallelism extracted by the ATOMIUM tool and the particular
characteristics of the target platform. For demanding applications running on large
multi-core arrays, the amount of work required for generation of the platform
variants may turn out to be very large.

Therefore, in order to aid the process of platform generation and thus improve
turnaround times during platform mapping exploration, ICOM developed a small
utility called ‘build grid’ and running in a Linux environment. The utility au-
tomatically generates user-selectable sizes and topologies of multi-core platform
source-files, based on template files that have been augmented with a proprietary
syntax for regular expressions. The utility is supplied at run-time with arguments
that control the generated platform topology: The user can select among a ring, a flat
rectangular grid open in both dimensions, a grid closed in one dimension (a “tube”)
and a grid closed in both dimensions (a torus). The size of the platform must be
supplied as an argument to the utility; the number of nodes if a ring is specified, or
the number of nodes along each of two dimensions, if a grid variant is chosen. If a
grid is chosen, the generated variant (flat, tube or torus) depends on the template file
base name, also supplied if different from the default at program invocation.

The use of ‘build grid’ allowed quick generation of the various platform
topologies examined in the course of platform exploration.

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 213

5 9 12 211815 24 27 N

lin
ear s

peedup

Speedup limit
13

speedup

0

D

10

5

Fig. 8.10 Graph of speedup-vs-number of threads for the parallelized 802.16e PHY application

8.5.7 Speedup Obtained from Parallelization

The picture of Fig. 8.10 illustrates the parallelism that was extracted with varying
numbers of threads in two different topologies. The horizontal axis refers to numbers
of threads allocated to the application’s computing tasks, whereas the vertical axis
indicates the obtained speedup, as measured by the ATOMIUM ‘hlsim’ high-level
simulator. As can be seen in the figure, the obtained speedup is less than the
ideal (“linear”) speedup, due to the non-zero (but fixed-size) communication delay
modeled by ‘hlsim’.

A significant (and expected) corollary from the adoption of the combined
functional/data-split for parallelizing our application was the observation in practice
of Amdhall’s Law, which gives speedup limits of a system in the presence of
sequential bottlenecks, such as the AWGN Channel model in our case. Indeed,
the obtained speedup is clearly trailing-off as more threads are added to the multi-
sets, reaching asymptotically an upper limit of approximately x13 times speedup.
The reason for the reduction of speedup with increasing number of threads is that,
effectively, the tasks which can only be mapped onto a single thread impose an
upper limit on speedup, since they become bottlenecks. In the limiting case, ‘hlsim’
reports that the sequential part of the parallelized application workload corresponds
to approximately 1/13th of total execution time, with all parallel activity converging
to zero time, as the number of threads for the parallelizable section goes towards
infinity.

The picture of Fig. 8.10 is the idealization reported by ‘hlsim’ (the IMEC-
supplied high-level simulator), which models communication overheads in a very
abstract manner. However, even this elementary modelling mechanism is sufficient
to reveal the impact of the chosen parallelization scheme: the data-point “D”
of the diagram corresponds to a 15-thread parallelization scenario where inter-
thread synchronization is entirely left to the MPA analysis algorithm. As a result,
excessive numbers of communication FIFOs were employed, due to a non-trivial
data dependency that was not possible to locate and remove from the source code.
The consequence of the large number of FIFOs was a speedup of approximately

www.manaraa.com

214 F. Ieromnimon et al.

9thd

F

12thd
15thd 18thd 21thd

24thd 27thd

P

0

1.0

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 8.11 Graph of performance degradation vs comm. FIFO size for various numbers of parallel
threads. The loopsynch mechanism is the chosen parallelization scheme for these tests

3.6 for the 15 threads. In contrast, the line of the graph corresponds to data-
points collected after the loopsynch communication mechanism was adopted for
the parallelized code.

8.5.8 Performance Impact from Communication FIFO Sizes

The impact of the size of the communication FIFOs connecting threads was shown
to be quite significant on the performance of the parallelized application. The graph
of Fig. 8.11 illustrates the performance degradation P observed for various sizes F
of communication FIFOs vs number of parallel threads. In this context, P is defined
as the ratio of speedup as a function of FIFO size, over the speedup achieved with
unconstrained FIFO size.

From the graph we observe an abrupt collapse in the simulator’s performance
as the FIFO size goes below a threshold value, which is closely correlated to the
number of threads in each of the thread sets. This is due to the chosen parallelization
scheme, whereby the data-buffers interconnecting the application’s thread-sets are
implemented as multiple buffers, in order for the loopsynch mechanism to control
the run-time binding of particular buffers to each thread of a multi-thread set. In
contrast, when the fully automatic synchronization scheme is chosen for the 15-
thread scenario (data-point “D” in Fig. 8.10), the measured speedup is entirely
insensitive to the size of the communication FIFOs, all the way down to single-
entry FIFOs.

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 215

Router

ARM11

I-cache

SDRAM

DME

Net I/F

NetWork
Subsystem

Memory
Subsystem

#0 #1

#2 #3

Master,
RE,
DW

QF

CH FMQ

#0 #1

#3 #4

Master,
RE, Qe,
MQ, DW

iF

FA FB

#2

#5

CH

Fig. 8.12 Outline of platforms for ABSOLUT simulations

8.5.9 ABSOLUT Environment Simulation Results

A smaller number of simulations was performed, compared to the simulation runs
of ‘hlsim’ that produced the graphs of the previous section, due to some loss of
consistency between the MPA and ABSOLUT. However, there is sufficient amount
of data for partially characterizing the MPA/ABSOLUT interface.

The platform employed for the ABSOLUT simulations was of three different
configurations as seen in Fig. 8.12: single node, a 2× 2 grid and a 2× 3 grid of
PEs (in the later case, one node was inactivated). Each node features an ARM9-
based processor with instruction and data caches, an amount of DRAM (for our
simulations; SRAM is also an option), the network interface that comprises with its
peers the NoC fabric and a DME engine for setting-up DMA transfers across the PE
fabric.

The first observation from the ABSOLUT simulator log files is that the obtained
speedup is reduced compared to the one reported by the ‘hlsim’. This is to

www.manaraa.com

216 F. Ieromnimon et al.

be expected, since the abstract simulator does not model the platform in detail.
In addition, modeling accuracy of speedup by ‘hlsim’ may be influenced by the
precision of kernel execution time-logging. Therefore that actual communications
cost as modeled by ABSOLUT does not enter the statistics by ‘hlsim’, resulting in
a more optimistic picture, compared with ABSOLUT data. Still, there is significant
speedup obtained:

• ×2 improvement of execution time for a 4-node platform, i.e. an efficiency of
50% per processor on average, for a 5-thread parallel version of the application
mapped onto the 4-node processor.

• ×3 to ×6.6 speedup for a 5-node platform, i.e. an efficiency of 60% per processor
for an eight-thread version mapped onto a 5-PE platform.

8.5.10 Effect on Granularity on Parallelism and Load-Balancing

A five-thread model was run on a four-node simulated platform. The five threads
generated correspond to the base case of the data-split driven family of models,
as illustrated in Fig. 8.8. As such, it is characterized by a significant imbalance
in the allocation of workload: thread #3 maps the computational kernel that is
doing two FFT transforms plus the MRC combiner and QAM-Decode tasks.
Compared to threads #2 (single iFFT transform) and #3 (channel model), this
thread is disproportionately sized, to say nothing of threads #1 and #5 (file-I/O
and scramble/unscramble). Therefore, the speedup figure obtained for the four-node
platform is an average figure between four processors that are not evenly loaded,
as illustrated by the graph of Fig. 8.13. Looking at the graph, we see that processor
#3 is kept busy practically all the time, while processor #0 is practically idling. It is
obvious from the graph that load imbalance leads to the effective elimination of
PE#0 from the work-pool. Furthermore, it is easy to deduce that coarse granularity
can lead to such an imbalance, if a naı̈ve static allocation scheme is employed for
mapping tasks to processing elements.

8.5.11 An Improved Load-Balance Solution

The observations on the 5-thread model were actually used as a guide for ex-
ploring more a efficient solution involving eight threads. Some code tweaking
was again required, alongside a new parallelization scenario for the MPA. The
different mapping of source-level computation kernels to threads was driven by
the observation that thread #4 of Fig. 8.13 actually corresponds to something like
50% of all computation for the application. Therefore, the two FFT operations and
the MRC operation were rendered as individual threads. Lighter threads such as
file-I/O and scramble/unscramble, QAM-Encode and Decode and also the MRC
thread were bunched together onto a single PE of a 5-PE platform (actually six PEs,

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 217

4%

40%

60%

96%

PE#0 PE#1 PE#2 PE#3

7mW

16mW
21mW

30mW

Processor Busy

Average Power

Fig. 8.13 Load balance and processor power figures for the 5-thread

38%

62%

86%

67%

PE#0 PE#1 PE#2 PE#3

16mW
22mW

28mW
23mW

Processor Busy

Average Power

67%

PE#4

23mW

Fig. 8.14 Load balance and processor power figures for the 8-thread model running on a 5-PE
platform

with the sixth processor inactive). The iFFT, Channel, FFT a and FFT b threads
were mapped onto individual PEs. This mapping resulted in a much better load
distribution among processors, as shown in Fig. 8.14.

Looking at the activity chart of Fig. 8.14, we see that processors #1, #3 and #4
feature nearly identical activity levels of 62%–67%. This is to be expected, since all
three are running the same instance of a 512-point FFT transform (no difference in
performance for the iFFT runningon PE #1). The largest activity in the chart comes

www.manaraa.com

218 F. Ieromnimon et al.

from the channel model running on PE #2 which is not trivially parallelizable. This
means that additional coding effort would be required, in order to have gains from
parallelization of this task.

8.6 Metrics Derived from Platform Evaluation

We will discuss in this section a number of performance metrics associated
with running the application on the simulated multi-core platform and also the
application development time when compared against conventional design flows.

8.6.1 Power Performance Figures for the Test Cases

The figures for number of instructions executed, instruction count and power
consumed per case are tallied in Table 8.1. From these figures, the figure for
MIPS/Watt (i.e. the power efficiency of the NoC/DME platform) can be extracted.
The calculated figure varies from case to case, due to the variable percentage of
memory-fetch vs instruction-execution from case to case.

The execution time for the FPGA (Virtex-5 XCV5FX130T) coincides with the
application’s real-time constraint, i.e. this is the time available for running it.

From the above table we see that the MIPS/Watt figure for the multi-core
platform does not change by more than about 30% from case to case. This is to be
expected, since this figure is not a function of platform extension but is an intrinsic
property of the particular processor & memory choice, clock speed and underlying

Table 8.1 Power-performance figures for single- and multi-core test cases

Test case
Proc. power
(mW)

Mempower
(mW)

Instruction
count

Time
(ms) Mips/Watt

Sequential
Code on
Pentium 4
@ 2.4GHz

∼50,000 ∼10,000 ∼400,000,000 180 6.67

5 threads on a
single PE

31.60 44.09 492,462,047 17,792 366

5 threads on a
4-PE
platform

75.15 158.51 488,920,405 6,987 300

8 threads on a
single PE

31.6 47.22 281,663,593 8,171 437

8 threads on a
5-PE
platform

111.53 206.53 287,104,188 2,667 338

FPGA 400 – 4 –

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 219

Table 8.2 Data storage requirements for MOSART vs conventional
methods

Test case
RAM
requirements

ROM
requirements

Sequential ‘C’ code
running on x86 PC

57 kbytes –

Multithreaded code
running on a
single-PE NoC

142 kbytes –

5-thread code running
on a 4-node PE NoC

142 kbytes –

8-thread code running
on a 5-PE NoC

152 kbytes –

VHDL-derived netlist
mapped onto FPGA

98 kbytes 4 kbytes

technology assumptions. Differences in the reported figures can be explained by
taking into account the relatively small differences in the percentage of memory
accesses vs instruction execution per processor from case to case. An additional
reason for the more-or-less constant reported figures is that no modification was
made to the node memory size for the various test cases.

Regarding the FPGA test-case, the instruction-count entry is not applicable here,
as the dedicated HW datapath does not execute a program. If we define elementary
logical and arithmetic operations as the unit of activity (OPS as in “Operations Per
Second”), we come up for the particular demonstrator with a figure of approximately
20GOPS/Watt. One must note that not all of the operations in the datapath carry
the same weight (e.g. multiplications compared to shifts), so the figure is not
as impressive on closer examination. Also, while the efficiency of the multi-core
platform may seem low, it should be stressed that it is based on general-purpose
processors (ARM) and not on application-optimised ASIPs.

NOTE: Pentium figures are from literature (power for processor and memory)
and from indirect instruction-count calculations. Execution time was measured with
the ‘time’ Linux facility.

8.6.2 Data Storage Efficiency

Table 8.2 is a comparison of the memory overhead for the application, mapped onto
the tried NoC platforms and a FPGA netlist, compared to the storage requirements
of the sequential application running on a commodity PC (Intel x86 processor).

A few remarks are in order, to clarify the above comparisons: First, we take as a
baseline the figure for sequential execution on a PC platform. Second, the figure for
the FPGA includes internal storage for the iFFT/FFT macros, which feature SRAM

www.manaraa.com

220 F. Ieromnimon et al.

buffers for in-place data-processing by the complex multiplication butterflies. Third,
the figures for the NoC memory usage refer to the data-storage alone- not code area,
since we want to compare similar resource requirements between implementation
techniques. Note that most of the storage overhead associated with the MOSART
platforms is due to the FIFOs used as a data-exchange mechanism between threads.
Improvements to the inter-thread communication mechanism can significantly
reduce this overhead. Note: The FIFO count is the same for the 5-threaded code
irrespective of processor count, hence the identical figures for memory use.

8.6.3 Multi-Core Speedup vs Uniprocessor Performance
and Extra-Polations

A speedup of 2.07 was measured for the 5-thread application when running on a
4-PE platform compared to execution speed of the same parallelized application
running on a single processor. This corresponds to an average idle time for the
processors of approximately 50%.

A speedup of 3.05 was measured for the 8-thread application when running
on a 5-PE platform, compared to speed of the application on a single processor,
corresponding to average processor idle time of approximately 40%.

The above speedup figures are indicative of significant communication overheads
between the threads mapping the application’s computational kernels. Note that
by communication we do not mean just the time taken by the NoC’s links to
transfer data across; indeed the figures we have from the ABSOLUT simulations
on busy time for the network interfaces of the platform’s nodes never exceed a
fraction of 1% of simulation time. However, our application is characterized by
the need to pass along very large data buffers of a few kilobytes. This fact, coupled
with a feature of MPA-derived code that disallows computational activity of the
communicating threads for the duration of the buffer’s transfer does explain the
observed communication latencies. Of course, speedup figures are also eroded by
the load imbalance inherent in a coarse-grained parallel model.

A solution to these problems would be a total restructuring of the application,
in order to allow fine-grain parallelism (i.e. many tens of threads at a minimum),
while keeping a very tight control on communication latencies across the multi-
core platform. The restructuring was not tried for lack of sufficient time in this
project. It is however relatively easy to identify a few salient points to such an
effort:

First, the amount of memory associated with each processor should be signifi-
cantly reduced, especially if the denser but more power-hungry DRAM is chosen
over the faster SRAM. Otherwise, the goal for power-efficient computation will be
compromised. Second, the application to be mapped onto a large number of threads
will typically require extensive redesign, if coming from a sequential (uniprocessor)
execution starting point. Alternatively, code for the target application should be

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 221

S

D

congested

Critical load

heavy load

light load

Communication Load

Starvation (idling)

Data-transfer limited

Underperforming

Max. performance

Processor Load

Fig. 8.15 Illustration of a communications and processing activity profile on a large 2-D NoC
platform. Communication “hot-spots” are formed around the points where data enter (processor
“S”) and leave (processor “D”) the array

developed from scratch having in mind a NoC target platform with the following
crucial characteristics:

1. Large number of discreet memories associated with processors.
2. Point-to-point communication links between processors that are characterized by

a minimum (ideally fixed) data-transport cost, both time- and power-wise.

The above two point lead to the conclusion that the one thing that must be avoided
at all costs when such a programming paradigm is adopted is excessive inter-
processor communication, especially between distant platform nodes. An abstract
representation of the situation is depicted in Fig. 8.15. In the picture, a large amount
of processors is busy on regular (and small) partitions of a large data-set. The results
of their processing need to be concentrated and serialized at a small number of
downstream nodes (one in the limiting case). The network interfaces of nodes are
progressively burdened with more traffic, as they are getting closer to the serializing
node(s). With a sufficiently large number of processors, a “horizon” situation is
created: Processors are no longer able to keep constantly busy, because of traffic
that is congested near the data “sink”. The exact symmetrical situation exists
with a data stream that needs to originate from a small number of input nodes:
downstream nodes are idling excessively because the data-supplying node cannot

www.manaraa.com

222 F. Ieromnimon et al.

push data through its local network neighbourhood fast enough. Also, processes
that are characterized by internal state may be encountered in an application and
they are essentially an instance of the above described phenomenon, although
algorithmic solutions for state replication and communication between processors
may be available.

In light of the above, additional tool resources would probably be necessary for
the exploitation of large NoC platforms. Also, the tools will need to balance the
desire for a smooth power profile over a large 2-D array against the additional
bottlenecks this strategy might entail: A “hot spot” would have to have its speed
(and thus power consumption) reduced right where speed is needed most to avoid
congestion in data-traffic.

8.6.4 Design Time with MOSART vs Current Practice

If we exclude the learning curve associated with learning and familiarizing with
the MOSART flow (and also the time to remove bugs from the parts making-up
the toolflow) we can measure the time taken to render our application into a multi-
threaded form at approximately 2 weeks, starting from a given sequential C-source.
During that time, source code evolved from its original form into one better able
to exploit available parallelism, although still at the coarse-grained level. Various
scenarios involving functional and data-space-driven partitioning of the application
into parallel threads were developed and evaluated by means of the first part of
the tested flow (the ATOMIUM suite). A subset of the developed parallelization
schemes was also run through the ABSOLUT simulator and metrics regarding
speedup and power efficiency were extracted.

Development of the same algorithmic chain in a netlist mapped onto an FPGA
by synthesizing VHDL derived from manual translation of the same sequential C-
code, has taken 10 weeks, also taking into account that the iFFT/FFT blocks were
IPs supplied by the FPGA vendor. We therefore have an improvement in design
time of approximately 5 times. This is a great improvement over the current state
of the art, although the figure would not be as large if more elaborate schemes for
fine-grain parallelism had to be developed, starting from the sequential application.
Still, the fact remains that the exploration space for the engineer is characterized
by fewer parameters, namely the nature of the starting sequential application and a
small number of parallelization schemes offered by the MPA tool, plus a choice from
among a set of target platforms, that may include custom ASIPs as well. In contrast,
a VHDL designer would have to cope with various styles of transcribing a design
from ‘C’, MATLAB or similar environments, a sizable menu of synthesis guidelines
and optimization techniques and finally tradeoffs between FPGA or ASIC target
families, in order to achieve optimum results. The runtime alone for the synthesis
tools makes for a design iteration of several hours (involving a loop of [source-
level editing −> verification of changes by RTL simulation −> synthesis −> post-
synthesis verification simulation]), compared to less than one hour for the [source-
editing −> ‘MPA’ −>‘hlsim’] loop.

www.manaraa.com

8 Application of the MOSART Flow on the WiMAX (802.16e) PHY Layer 223

8.7 Required Work for a Production-Level MOSART Flow

The portion of the evaluated toolflow demonstrated a viable and promising method-
ology for developing parallel application for targeting onto multi-core NoC plat-
forms. Some more work would transform the current proof-of-concept MOSART
paradigm into a robust engineering tool that can withstand the demands of a
production environment. A short list of additional work items according to ICOM
would be:

• Addressing the stability of MPA: The tool should be made more robust, so
that code that conforms to the clean-C standard does not produce cryptic error
messages or code with unexpected runtime behaviour.

• Seamless integration with ABSOLUT: Handover of parallel code to the ABSO-
LUT flow should be entirely transparent to the user.

• Synopsys-Coware integration with MOSART: Generated ASIP processor must
integrate transparently with the NoC platform hardware, so that a systmC model
of the processor is embedded in ABSOLUT automatically. Also, the generated
SW support (compiler, linker, etc) associated with the custom ASIP must be
integrated with the ABSOLUT and CAMALA flows.

• Some support should be integrated for quick generation of user-specified pro-
cessor fabrics: number of nodes, dimensions of fabric, inactive nodes, processor
type for each node or groups of nodes (to support heterogeneous NoCs).

• Support should be supplied to the user for efficient mapping of threads onto
processors. This task may be simple enough for trivial examples, but for the case
of dozens or hundreds of threads in as many processors, the problem resembles
closely the optimization problem faced by the place & route algorithms for HW
design. Thus, solutions similar to the ones employed by post-synthesis P&R tools
for ASICs and FPGAs will probably be required.

• Visualization of ABSOLUT simulations, with emphasis on critical perfor-
mance indicators: processor & memory activity, topology and lifetime of DME-
mediated transfers, communications network load indicators, trace capability
associated with NoC resources (activity profiles, connectivity information, etc)
or with application attributes (code profiles, variable traces, etc).

• Finally, an IDE for presenting a unified and easily manageable interface to the
user would be a considerable productivity boost.

	Scalable Multi-core Architectures
	Foreword
	Preface
	Contents
	Contributors
	Part I HW/SW/ Building Blocks: Architecture, Methods, and Techniques
	Part II System-level Exploration
	Part III Industrial Applications

